DEPARTMENT OF MATHEMATICS
 SYLLABUS

I. MATH 333 - INTRODUCTION TO PROBABILITY AND STATISTICS - 4 credits

II. Catalog Description

This course is designed for mathematics education majors to provide a rigorous onesemester study of probability, distribution theory and the basics of statistical inference. Topics to be covered include probability, expectation, discrete and continuous distributions, descriptive statistics and both estimation and hypothesis testing for one and two-sample problems. No credit for both MATH 333 and MATH 235 or for both MATH 333 and MATH 335. PREREQUISITE: MATH 311.

III. Objectives

A. To provide students with a basic understanding of probability theory.
B. To provide students with thorough training in distribution theory for both discrete and continuous random variables
C. To cover the basics of descriptive statistics including graphical approaches to data description and exploratory data analysis.
D. To cover the basics of statistical inference including estimation and hypothesis testing for both one and two-sample inference for means and proportions. The theory and practical interpretation of statistical inference will be discussed.
E. To provide Mathematics Education majors with some guidelines for teaching probability and statistics.
F. To provide students with an introduction to statistical computing using Minitab; a statistical software package.

IV. Course Outline

A. Introduction to Statistics and Data Analysis

1. Overview
2. The role of probability
3. Measures of location: the sample mean
4. Measures of variability
5. Discrete and continuous data
6. Statistical Modeling, Scientific Inspection, and Graphical Diagnostics
B. Probability
7. Sample space
8. Events
9. Counting sample points
10. Probability of an event
11. Additive rules
12. Conditional probability
13. Multiplicative rules
14. Bayes' Rule
C. Random Variables and Probability Distribution
15. Concept of a random variable
16. Discrete probability distributions
17. Continuous probability distributions
18. Empirical distributions
19. Joint probability distributions
D. Mathematical Expectation
20. Mean of a random variable
21. Variance and covariance
22. Means and variances of linear combinations of random variables
23. Chebyshev's Theorem
E. Some Discrete Probability Distributions
24. Introduction
25. Discrete uniform distribution
26. Binomial and multinomial distributions
27. Hypergeometric distribution
28. Negative binomial and geometric distributions
29. Poisson distribution
F. Some Continuous Probability Distributions
30. Normal distribution
31. Areas under the normal curve
32. Applications of the normal distribution
33. Normal approximation to the binomial
34. Gamma and exponential distributions
35. Applications of the exponential and gamma distribution
36. Chi-squared distribution
G. Random Sampling, Data Description, and some Fundamental Sampling Distributions
37. Random sampling
38. Some important statistics
39. Data displays and graphical methods
40. Sampling distributions
41. Sampling distributions of means
42. Sampling distributions of S^{2}
43. t-Distribution
44. F-Distribution
H. One- and Two-Sample Estimation Problems
45. Introduction
46. Statistical inference
47. Classical methods of estimation
48. Single sample: estimating the mean
49. Standard error of a point estimate
50. Tolerance limits
51. Two samples: estimating the difference between two means
52. Paired observations
53. Single sample: estimating a proportion
54. Two samples: estimating the difference between two proportions
55. Maximum likelihood estimation
I. One- and Two-Sample Tests of Hypotheses
56. Statistical hypotheses: general concepts
57. Testing a statistical hypothesis
58. One- and Two-tailed tests
59. The use of P -values in decision making
60. Single sample: tests concerning a single mean (variance known)
61. Relationship to confidence interval estimation
62. Single sample: tests on a single mean (variance unknown)
63. Two samples: tests on two means
64. Choice of sample size of testing means
65. Graphical methods for comparing means
66. One and Two sample tests on proportions
V. Criteria for Evaluating Student Performance

The method for evaluation may include in-class exams, regularly collected and graded problem sets, Minitab projects, and a final examination.
VI. Suggested Texts

Walpole, R.E., Myers, R.H., Myers, S.L., and Ye, K., Probability and Statistics for Engineers and Scientists, $9^{\text {th }}$ Edition, Prentice Hall Publishing Co., 2012.

Devore, J.L., Probability and Statistics for Engineering and the Sciences, Eighth Edition, Brooks/Cole Publishing Co., 2012.
VII. General Education Credit

This course may not be taken for general education credit

April 29, 2013

