DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS

I. MATH 335 - MATHEMATICAL STATISTICS I - 3 Credits
II. Catalog Description

Probability, random variables and probability distributions, mathematical expectation, special probability distributions and probability densities. MATH 335 may be considered
as an introductory course in probability theory.

Prerequisite: Math 311
III. Objectives
A. To introduce probability theory as a basis for further study in mathematical statistics.
B. To prepare secondary education mathematics teachers for teaching topics related to probability and statistics.
C. To prepare students for Mathematical Statistics II.
IV. Course Outline
A. Introduction

1. Historical background
2. Mathematical preliminary: combinatorial methods
3. Mathematical preliminary: binomial coefficients
B. Probability
4. Sample spaces
5. Events
6. The probability
7. Some rules of probability
8. Conditional probability
9. Independent events
10. Bayes' Theorem
C. Probability Distributions
11. Random variables
12. Discrete probability
13. Continuous random variables
14. Probability density functions
15. Multi variate distributions
16. Marginal distributions
17. Conditional distributions
D. Mathematical Expectation
18. The expected value of a random variable
19. Moments
20. Chebyshev's Theorem
21. Moment-generating functions
22. Product moments
23. Moments of linear combinations of random variables
24. Conditional expectations
E. Special Probability Distributions
25. The discrete uniform distribution
26. The Bernoulli distribution
27. The binomial distribution
28. The negative binomial and geometric distributions
29. The hyper geometric distribution

Binomial approximation to the hyper geometric
6. The Poisson distribution

Poisson approximation to the binomial
7. The multinomial distribution
8. The Multivariate hyper geometric distribution
F. Special Probability Densities

1. The uniform density
2. The gamma, exponential, and chi-square distributions
3. The beta distribution
4. The normal distribution
5. The normal approximation to the binomial distribution
V. Suggested Text

John E. Freund's Mathematical Statistics, $8^{\text {th }}$ Ed., by Miller \& Miller, Pearson, 2014.
VI. General Education Credit

This course cannot be taken for general education credit.

Revised 04/25/13

