Partial Differential Equations
MATH 467.01 (3 credits)

Prerequisites: A grade of C- or better in MATH 365 (*Ordinary Differential Equations*) is the prerequisite for this course.

Objectives: MATH 467 provides an introduction to partial differential equations and their applications. Upon completion of this course the student will:

- understand how partial differential equations arise in the mathematical description of heat flow and vibration,
- demonstrate the ability to solve initial boundary value problems,
- express and explain the physical interpretations of common forms of PDEs,
- understand issues related to existence and uniqueness of solutions,
- depict in series and graphical form the solutions to initial boundary value problems,
- appreciate the theory underlying the solution techniques,
- be acquainted with applications of partial differential equations in various disciplines of study.

Course Contents: Topics covered in this course may include the following. The material will be presented in a logical order, though not necessarily in the order shown below. Other topics will be added as time and interests allow.

- **Introduction**
 - Extremely brief review of topics from ordinary differential equations
 - Heat equation as model of heat conduction in a rod
 - Separation of variables
 - Fundamental solutions and superposition of solutions
- **Fourier series**
 - Orthogonality and Euler-Fourier formulas
 - Periodicity
 - The Fourier Convergence Theorem
 - Even and odd functions; sine and cosine series
 - Extensions of functions to even and odd functions
- **The Heat Equation**
 - Solution of initial/boundary value problems
 - Homogeneous Dirichlet boundary conditions
 - Nonhomogeneous boundary conditions and steady-state solutions
 - Other boundary conditions
 - A Maximum Principle and uniqueness of solution for the heat equation
- **The Wave Equation**
 - Solution of initial/boundary value problems
 - Characteristic coordinates and a general solution
 - D’Alembert’s solution of the initial value problem
 - Energy integrals and uniqueness of solution for the wave equation
• Laplace’s Equation
 – Boundary value problems in rectangular coordinates
 – Boundary value problems in polar coordinates
 * Periodic boundary conditions
 – Neumann problems and mixed boundary conditions
 * Lack of uniqueness of solution
 * Necessary conditions for the existence of a solution
 – Uniqueness of solutions
 * Mean Value Property
 * Weak form of the Maximum Principle
 * Uniqueness of solutions of the Dirichlet problem

• Sturm-Liouville Theory
 – General two-point boundary value problem
 – Eigenvalues and eigenfunctions
 – Lagrange’s identity and consequences
 – Normalization of eigenfunctions and general eigenfunction expansions
 – Nonhomogeneous boundary value problems

Other topics may be included if time permits.