COURSE SYLLABUS Math 422.01 -- LINEAR ALGEBRA II Fall 2016

CRN: CREDIT HOURS: HOUR/DAY: MEETING ROOM:	10726 3 9:00 – 9:50 a.m. M W F Wickersham Hall, Room 201
INSTRUCTOR: OFFICE: OFFICE PHONE: DEPT. PHONE: FAX: E-MAIL: URL: OFFICE HOURS:	Dr. Ron Umble Wickersham Hall, Room 203 871-7318 871-7668 871-7948 ron.umble@millersville.edu http://sites.millersville.edu/rumble 10:00 - 11:00 a.m. M F 11:00 a.m noon M R F and by appointment
REQUIRED TEXTS:	H. Anton and C. Rorres, <i>Elementary Linear Algebra, Applications Version</i> , 11 th Ed., John Wiley & Sons, Inc., New York, 2014. ISBN 978-1-118-43441-3.
	L. Johnson, R. Riess and J. Arnold, <i>Introduction to Linear Algebra</i> , 5 th Ed., Addison Wesley/Pearson Education, Inc. 2002. ISBN 0-201-65859-3.
	R. Umble, <i>Lecture Notes on Linear Algebra: A Second Course,</i> free download on D2L, 2014.
CALCULATOR:	TI-86 or higher (TI-83/84 can't handle some necessary calculations)
FORMAT:	Lecture
RATIONALE:	Linear algebra is an essential cornerstones of mathematics. Its powerful tools are applied in virtually every area of pure and applied mathematics. A strong foundation in linear algebra is essential for success in every mathematical endeavor.
	Throughout this course you will encounter many new theoretical ideas and a wide range of practical applications. Working with applications helps to solidify your theoretical understanding, strengthen your computational skill, and build your self-confidence.
OBJECTIVES:	 Upon completion of this course, the student will be able to: 1. Apply concepts of Linear Algebra to solve a variety of practical problems 2. Find the matrix of a linear map relative to given bases 3. Find the transition matrix for a change of basis 4. Compare square matrices for similarity 5. Compute eigenvalues and bases for corresponding eigenspaces 6. Diagonalize matrices whenever possible 7. Find the matrix representation of a quadratic form 8. Orthogonally diagonalize a quadratic form 9. Compute the spectral decomposition of a real symmetric matrix 10. Compute the singular value decomposition of any mxn matrix 11. Reduce an nxn matrix to Hessenberg form

- 12. Compute the characteristic polynomial of a Hessenberg matrix
- 13. Compute generalized eigenvectors of an unreduced Hessenberg matrix
- 14. Use Householder transformations to reduce an mxn matrix (m \geq n) to trapezoidal form
- 15. Reduce a singular matrix to Nonsingular-Nilpotent form
- 16. Compute the Jordan Canonical Form of an nxn matrix

COMMENTS: This course begins with a review of Linear Algebra I. After the fundamentals are

well in hand, we move on to the new topics in the course. Lectures during the review period include a brief discussion of the Review Topic (RT) followed by an application (APP). To prepare for class, read the text to be covered carefully, take notes as you read, flag points that seem unclear to you, and bring your questions from the reading to class for discussion. Work out each example in the text BEFORE attempting the homework exercises.

UNDERSTANDINGS: 1. You are expected to attend all classes.

2. You are expected to complete all assigned work on time.

3. You may work together on problem sets, however you must write up your solutions independently.

- 4. Exams missed for the following reasons can be made up:
 - a. Illness documented by campus infirmary or family physician
 - b. Death of a family member
 - c. Out-of-classroom educational experiences*
 - d. University athletic contests*
 - e. Religious holidays*
 - f. Jury duty*

*Requires advance notification

EVALUATION: Course Component Weight

Problem sets* (6 @ 3%)	18%
Hour exams (2 @ 24%)	48%
Individual project	10%
Final examination	24%

*Lowest problem set score is dropped

Grading Scale:

93% - 100%	A*	73% - 76%	С
90% - 92%	A-	70% - 72%	C-
87% - 89%	B+	67% - 69%	D+
83% - 86%	В	63% - 66%	D
80% - 82%	B-	60% - 62%	D-
77% - 79%	C+	Below 60%	F
	-		

* At my discretion, Course Honors will be awarded for exceptional scholarship.

COURSE SCHEDULE Math 422.01 -- LINEAR ALGEBRA II Fall 2016

Date		Торіс	Text Readir	ng	Homework Anton
Aug	Johnson 29M	(A=Anton; J=Johnson) RT: Systems of linear equations w/ real coefficier	nts		1 - 34
	J59:43,4 [°]	9,61,69 APP: Network analysis: traffic and current flow PROBLEM SET #1 ASSIGNED	84 - 88		A94:1,3,5,7
	31W	RT: Computing the inverse of a matrix RT: Determinants APP: Curves and surfaces through specified point	52 - 58 105 - 109 ts	92 - 102 447 - 453 528 - 532	A59:9a,11a,13,15 J102:11,13,29,48
			J453:1,9,15,2	21	A532:1a,2a,3,4a,6a
Sept 17(x2).2	2F 5.26	Systems of linear equations w/ complex coefficie	nts		320 - 321 J324:1-
,		APP: Polynomial interpolation APP: Simpson's rule	91 - 93 Lecture note	80 - 88 s	J90:1,5,9,11,13
	5M	LABOR DAY (NO CLASS)			
	7W	RT: Real vector spaces and linear independence Complex vector spaces	183 - 210 313 - 315	71 - 78 316 - 318	A200:7,9,19; J78:9,13 A210:9,15; A324:1,3,5,7,9
	9F	RT: Real inner product spaces Complex inner product spaces PROBLEM SET #1 DUE PROBLEM SET #2 ASSIGNED	345 - 360 316 - 317	392 - 400	A353:13,17,25,27,31 A324:11,13,27,29,30 J401:1,13
	12M	RT: The Gram-Schmidt process APP: QR decomposition	364 - 373 374 - 375		A376:1,5,7,9,11,15,19,29 A377;45,49
	14W A479:1.5	RT: Matrix representation of linear transformatio	ns	472 - 478	419 - 429
	- ,-	RT: Dimension Theorem	447 - 455	225 - 239	A456: 7,10,11,12,13,14 J239:3,5,8,11,19-29
	16F Exercise	APP: Wronskian determinants s in lecture notes	Lecture note	S	
		APP: Least squares and data fitting	378 - 386	243 - 254	A386:3,7,15; J254:1,7,11
	19M	RT: Compositions, inverses, isomorphisms, and inner product space isomorphisms	458 - 470		A464:1,3,11,13,15,22 A471:1,3,5,7,11
26	21W	APP: Geometry of matrix operators on ${f R}^2$	280 - 287		A287:1-4,5-21(x2),22-
20		APP: Translating with homogeneous coordinates PROBLEM SET #2 DUE PROBLEM SET #3 ASSIGNED	Handout		TBD
	23F	RT: Change of basis	229 - 234	431 - 438	A235:1,2a,3,4a,5,7,11
	26M	RT: Real eigenvalues and eigenspaces APP: Reflections in R2; rotations in R3	291 – 299 Lecture note	298 - 315 s	A300:1,3a,5a,13,15,19,21 TBD
	28W	RT: Diagonalization Orthogonal matrices Complex eigenvalues and eigenspaces	302 - 311 401 - 407 317 - 324	327 - 330 330 - 333 319 - 324	A311: 5-25(x4) RT: A407:3,5,7,11,13,15,21 A324:21,23; J324:19

	30F	Hermitian, unitary, and normal matrices	437 - 442	Locturo po	A443:1,3,7,9,1	9,21,23,25	
	Exercise	es 1-7 in notes	I	Lecture no	les		
Oct	3M Exercise	APP: Geometry of space-time & special relativity s 8.9 in notes	П	Lecture no	otes		
		APP: Systems of linear differential equations PROBLEM SET #3 DUE	326 - 330		A330:1,3,7,9		
Date		PROBLEM SET #4 ASSIGNED		Text Reading			
	Homew	ork	<u>Anton</u>	<u>Johnson</u>	(A=Anton; J=	Johnson)	
Oct	5W	APP: The Fibonacci sequence and the Golden Ra	tio	Lecture no	otes		
	7F	HOUR TEST I					
	8-11	FALL BREAK					
	12W	Orthogonal diagonalization of symmetric matrice Unitary diagonalization of normal matrices	es 441 - 442	409 - 412	333 - 336 A443:1,3,11,13	A416:7,11,13 3,15,17,29	
	14F	Spectral decomposition of a real symmetric mate	rices	413 - 415		A416:15-18	
	17M	Quadratic forms and the Principal Axis Theorem PROBLEM SET #4 DUE PROBLEM SET #5 ASSIGNED	417 - 422	484 - 492	A427:1,3,5,9,1	1-21(odd)	
	19W	APP: Identifying conics and quadrics	422 - 427		A428:11,13,15	; J492:7,19	
	21F	APP: Optimizing quadratic forms PROJECT OPTIONS	429 - 435		A436:3,5,7,9,1	1,19	
	24M	The singular value decomposition	514 - 520		A520:1-11(odd)	
	26W	APP: Data compression Similarity invariants	521 - 523 481 - 485	325 - 327	A524:1-9(odd) A311:1-4; A48	6:1,2,23,24,T-F	
	28F	Reduction to Hesenberg form (Algorithm 1) PROBLEM SET #5 DUE PROBLEM SET #6 ASSIGNED		502 - 509	J509:1-9(odd)		
	31M	Krylov's Method – Computing characteristic poly PROJECT SELECTIONS DUE	nomials	510 - 518	J518:1-13(x4)		
Nov	2W	Householder transformations PROJECTS ASSIGNED		519 - 529	J529:1-15(odd))	
	4F	Reduction to Hessenberg form (Algorithm 2) APP: Least-squares revisited		531 - 536	J529:21,22 J539:1-17(x4)		
	7M	APP: Computing eigenvalues The QR Algorithm	ı	536 - 539			
	9W	The Cayley-Hamilton Theorem		540 - 545	J545:1-4		
	11F	Generalized eigenvectors PROBLEM SET #6 DUE PROBLEM SET #7 ASSIGNED		546 - 553	J553:1-5		
155	14M	APP: Systems of differential equations	Lecture note	S		Exercise	
	16W	Schur Triangularization Theorem	Lecture note	S		S-T	

Exercises

Everai e	18F	Another proof of the Cayley-Hamilton Theorem	Lecture notes		C-H
Exercise	es	Intro to Range-Nullspace decomposition of \mathbf{C}^{n}	Lecture notes		R-N
	21M	HOUR TEST 2			
	23-27	THANKSGIVING BREAK			
	28M	Proof of Range-Nullspace decomposition theorer Intro to Nonsingular-Nilpotent form	n Lecture notes		N-N
Exercise	es	PROBLEM SET #7 DUE			
Date	Homew	Topic ork	Text Reading		
Nov	30W	Proof of Nonsingular-Nilpotent theorem	Lecture notes		
252,254	,255	Intro to Jordan form of a nilpotent matrix	Lecture notes		JF-Nil Ex
Dec	2F	Jordan form of a nilpotent matrix (continued)	Lecture notes		JF-Nil Ex
200-202	-	PROJECT PROBLEM SET DUE			
Exercise	5M 273	Jordan Canonical Form of a general nxn matrix	Lecture notes		JF-Gen
	7W	JCF of a general nxn matrix (continued)	Lecture notes		JF-Gen
270	274-27	APP: Powers of a general nxn matrix	Lecture notes		Exercise
279		TAKE-HOME FINAL EXAM DISTRIBU	TED		
	9F	APP: General systems of linear differential eq's	Lecture notes	Exercises 280-2	281
	12M	Project presentations (3)			
	14W	Project presentations (5) TAKE-HOME FINAL DUE AT 9:00 a.m	1.		

Millersville University and its faculty are committed to assuring a safe and productive educational environment for all students. In order to meet this commitment, comply with Title IX of the Education Amendments of 1972, 20 U.S.C. §1681, et seq., and act in accordance with guidance from the Office for Civil Rights, the University requires faculty members to report to the University's Title IX Coordinator incidents of sexual violence shared by students. The only exceptions to the faculty member's reporting obligation are when incidents of sexual violence are communicated by a student during a classroom discussion, in a writing assignment for a class, or as part of a Universityapproved research project. Faculty members are obligated to report to the person designated in the University Protection of Minors policy incidents of sexual violence or any other abuse of a student who was, or is, a child (a person under 18 years of age) when the abuse allegedly occurred.

5

Information regarding the reporting of sexual violence, and the resources that are available to victims of sexual violence, is available at http://www.millersville.edu/titleix/title-ix-policies-and-procedures.php

11-23-2016