Stamp Folding Puzzles:
A Delightful Excursion in Recreational Geometry

Ron Umble, speaker
Millersville Univ of Pennsylvania

MU/F&M Mathematics Colloquium

April 7, 2011
In the 1930s, Stanislav Ulam posed the following **Map Folding Problem**: How many ways can one fold a sheet of square "stamps" into a packet the size of one stamp?

Easier problem: Suppose the "map" is a horizontal strip of stamps:

Number stamps from left-to-right. Fold with stamp #1 face up & upright.

Try this with a strip of three stamps.
A strip of three stamps can be folded six ways:

(Here the front of stamp #1 is marked)
Folding a Strip of \(n \) Stamps

\[
\begin{array}{cccccccccc}
\# \text{ Stamps:} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & n \\
\# \text{ Foldings:} & 2 & 6 & 16 & 50 & 144 & 462 & 1392 & 4536 & 14060 & \cdots & ?
\end{array}
\]

- No formula for the \(n^{th} \) term is known
Folding a Strip of n Stamps

<table>
<thead>
<tr>
<th># Stamps:</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td># Foldings:</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>50</td>
<td>144</td>
<td>462</td>
<td>1392</td>
<td>4536</td>
<td>14060</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>

- No formula for the n^{th} term is known
- On-line Encyclopedia of Integer Sequences: A000136
Folding a Strip of \(n \) Stamps

\[
\begin{array}{cccccccccc}
\# \text{ Stamps:} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & n \\
\# \text{ Foldings:} & 2 & 6 & 16 & 50 & 144 & 462 & 1392 & 4536 & 14060 & \cdots & ? \\
\end{array}
\]

- No formula for the \(n^{th} \) term is known
- On-line Encyclopedia of Integer Sequences: A000136
 - OEIS was launched in 1996
Folding a Strip of n Stamps

Stamps: 2 3 4 5 6 7 8 9 10 \cdots n
Foldings: 2 6 16 50 144 462 1392 4536 14060 \cdots ?

- No formula for the n^{th} term is known
- On-line Encyclopedia of Integer Sequences: A000136
 - OEIS was launched in 1996
 - Initiated in 1964 by Neil Sloane while a grad student at Cornell
Folding a Strip of \(n \) Stamps

\[\text{\# Stamps: 2 3 4 5 6 7 8 9 10 \cdots n} \]
\[\text{\# Foldings: 2 6 16 50 144 462 1392 4536 14060 \cdots ?} \]

- No formula for the \(n^{th} \) term is known
- On-line Encyclopedia of Integer Sequences: A000136
 - OEIS was launched in 1996
 - Initiated in 1964 by Neil Sloane while a grad student at Cornell
 - > 10,000 new entries have been added each year
Folding a Strip of n Stamps

\# Stamps: 2 3 4 5 6 7 8 9 10 \cdots n
\# Foldings: 2 6 16 50 144 462 1392 4536 14060 \cdots ?

- No formula for the n^{th} term is known
- On-line Encyclopedia of Integer Sequences: A000136
 - OEIS was launched in 1996
 - Initiated in 1964 by Neil Sloane while a grad student at Cornell
 - $>10,000$ new entries have been added each year
 - OEIS now has $>180,500$ entries
Folding a Strip of n Stamps

Stamps: 2 3 4 5 6 7 8 9 10 \cdots n
Foldings: 2 6 16 50 144 462 1392 4536 14060 \cdots ?

- No formula for the n^{th} term is known
- On-line Encyclopedia of Integer Sequences: A000136
 - OEIS was launched in 1996
 - Initiated in 1964 by Neil Sloane while a grad student at Cornell
 - $>10,000$ new entries have been added each year
 - OEIS now has $>180,500$ entries
- The Map Folding Problem is open and not well understood
Counting all possible foldings is a difficult problem...
Counting all possible foldings is a difficult problem...

So instead, let’s fold the stamps in some specified configuration
• Counting all possible foldings is a difficult problem...

• So instead, let’s fold the stamps in some specified configuration

• Such problems are called **Stamp Folding Puzzles**
Stamp Folding Puzzle #1

Fold this 4×4 sheet of stamps into a 2×2 square showing the four green squares
Stamp Folding Puzzle #1

Fold this 4×4 sheet of stamps into a 2×2 square showing the four

- green squares
- yellow squares
Stamp Folding Puzzle #1

Fold this 4×4 sheet of stamps into a 2×2 square showing the four

- green squares
- yellow squares
- blue squares
Stamp Folding Puzzle #1

Fold this 4×4 sheet of stamps into a 2×2 square showing the four

- green squares
- yellow squares
- blue squares
- red squares
Stamp Folding Puzzle #2

Fold this block of equilateral triangular stamps into a packet 9-deep with stamps in the following order:

2 6 7 5 9 3 4 1 8

(Hint: tuck 5 between 7 and 9.)
Fold this block of isosceles right triangular stamps into a packet 16-deep with stamps in the following order:

4 1 16 6 5 15 14 8 7 13 11 12 2 3 9 10
Fold this block of 60°-right triangular stamps into a packet 12-deep with stamps in the following order:

5 2 8 9 7 3 4 11 12 1 6 10
Fredrickson’s Conjecture*

Although triangular stamps have come in a variety of different triangular shapes, only three shapes seem suitable for [stamp] folding puzzles: equilateral, isosceles right triangles, and 60°-right triangles.

The HYKU Theorem

(Hall, York, Kirby, U - 2009)

Exactly eight polygons generate edge tessellations of the plane:

- Equilateral triangle
- Isosceles triangle
- Right triangle
- Square
- Kite
- Regular hexagon
- Isosceles trapezoid
- Rectangle
Corollary (Settling Fredrickson’s Conjecture)

Exactly four shapes are suitable for stamp folding puzzles:

Rectangles; equilateral, isosceles right, 60°-right triangles.
Proof of Fredrickson’s Conjecture

- Let G be a polygon generating a suitable edge tessellation
Proof of Fredrickson’s Conjecture

- Let G be a polygon generating a suitable edge tessellation
- Let V be a vertex of G
Proof of Fredrickson’s Conjecture

- Let G be a polygon generating a suitable edge tessellation
- Let V be a vertex of G
- The interior angle of G at V has measure $\theta < 180^\circ$
Proof of Fredrickson’s Conjecture

- Let G be a polygon generating a suitable edge tessellation.
- Let V be a vertex of G.
- The interior angle of G at V has measure $\theta < 180^\circ$.
- Let G' be the reflection of G in an edge containing vertex V.

![Diagram of polygon G and its reflection G']
The interior angle of G' at V has measure θ; inductively, every interior angle at V has measure θ.
The interior angle of G' at V has measure θ; inductively, every interior angle at V has measure θ.

![Diagram showing angles θ and vertices G, G', V]
The interior angle of G' at V has measure θ; inductively, every interior angle at V has measure θ.

\begin{center}
\begin{tikzpicture}
\node (V) at (0,0) {V};
\node (G) at (-2,-3) {G};
\node (G') at (2,-3) {G'};
\node (theta) at (-1,-1) {θ};
\node (theta) at (1,-1) {θ};
\end{tikzpicture}
\end{center}
A point P is an n-center of a tessellation if the group of rotational symmetries centered at P is generated by a rotation of $\phi_n = 360/n^\circ$.
A point P is an n-center of a tessellation if the group of rotational symmetries centered at P is generated by a rotation of $\phi_n = \frac{360}{n}$.

An n-center is even if n is even.
A point P is an n-center of a tessellation if the group of rotational symmetries centered at P is generated by a rotation of $\phi_n = \frac{360}{n}$°.

An n-center is even if n is even.

Successively reflecting in the edges of G meeting at V is a rotational symmetry.
A point P is an n-center of a tessellation if the group of rotational symmetries centered at P is generated by a rotation of $\phi_n = 360/n\,^\circ$

An n-center is even if n is even

Successively reflecting in the edges of G meeting at V is a rotational symmetry

V is an n-center for some $n > 1$
Admissible Interior Angles

- A point P is an \textit{n-center} of a tessellation if the group of rotational symmetries centered at P is generated by a rotation of $\phi_n = \frac{360}{n}\degree$

- An \textit{n-center} is \textit{even} if n is even

- Successively reflecting in the edges of G meeting at V is a rotational symmetry

- V is an \textit{n-center} for some $n > 1$

$$\theta = \begin{cases}
\phi_n & \text{if the bisector of } \angle V \text{ is a line of symmetry} \\
\frac{1}{2}\phi_n & \text{otherwise}
\end{cases}$$
Admissible Interior Angles

- **Case** $n = 2 : \phi_2 = 180^\circ$
Admissible Interior Angles

- Case $n = 2 : \phi_2 = 180^\circ$

- $\theta < 180^\circ \Rightarrow \theta = 90^\circ$
• Case $n = 2: \phi_2 = 180^\circ$

• $\theta < 180^\circ \Rightarrow \theta = 90^\circ$

• Case $n = 3: \phi_3 = 120^\circ \Rightarrow \theta \in \{60^\circ, 120^\circ\}$
Admissible Interior Angles

- Case $n = 2 : \phi_2 = 180^\circ$

- $\theta < 180^\circ \Rightarrow \theta = 90^\circ$

- Case $n = 3 : \phi_3 = 120^\circ \Rightarrow \theta \in \{60^\circ, 120^\circ\}$

- Case $n \geq 4 : \phi_n \leq 90^\circ \Rightarrow \theta \in \left\{90^\circ, 72^\circ, 60^\circ, 51\frac{3}{7}^\circ, 45^\circ, \ldots\right\}$
Admissible Interior Angles

- Case $n = 2 : \phi_2 = 180^\circ$

- $\theta < 180^\circ \Rightarrow \theta = 90^\circ$

- Case $n = 3 : \phi_3 = 120^\circ \Rightarrow \theta \in \{60^\circ, 120^\circ\}$

- Case $n \geq 4 : \phi_n \leq 90^\circ \Rightarrow \theta \in \left\{90^\circ, 72^\circ, 60^\circ, 51\frac{3}{7}^\circ, 45^\circ, \ldots\right\}$

- **Conclude:** $\theta \in \{x \mid nx = 360^\circ, \ n \geq 3\}$
Admissible Interior Angles

- **Case** $n = 2 : \phi_2 = 180^\circ$

 \[\theta < 180^\circ \Rightarrow \theta = 90^\circ \]

- **Case** $n = 3 : \phi_3 = 120^\circ \Rightarrow \theta \in \{60^\circ, 120^\circ\}$

- **Case** $n \geq 4 : \phi_n \leq 90^\circ \Rightarrow \theta \in \left\{90^\circ, 72^\circ, 60^\circ, 51\frac{3}{7}^\circ, 45^\circ, \ldots\right\}$

Conclude: $\theta \in \{x \mid nx = 360^\circ, \ n \geq 3\}$

Obtuse interior angles measure 120°
If $\theta = 120^\circ$, three copies of G share vertex V.
If $m\angle V = 120^\circ$, three copies of G share vertex V.

Let e and e' be the edges of G that meet at V, and labeled so that the angle from e to e' measures 120°.

\[V \]
Let e' and e'' be the images of e and e' under a 120° rotation.
Let e' and e'' be the images of e and e' under a 120° rotation.

Then e'' and bisector s of $\angle V$ are collinear.
Let e' and e'' be the images of e and e' under a 120° rotation.

Then e'' and bisector s of $\angle V$ are collinear.

e' is the reflection of e in bisector s.

\begin{itemize}
 \item Let e' and e'' be the images of e and e' under a 120° rotation
 \item Then e'' and bisector s of $\angle V$ are collinear
 \item e' is the reflection of e in bisector s
\end{itemize}
Angle Bisectors and Lines of Symmetry

Let e' and e'' be the images of e and e' under a 120° rotation.

Then e'' and bisector s of $\angle V$ are collinear.

e' is the reflection of e in bisector s.

Bisector s is on a line of symmetry.
Argument above depends only on the parity of n
Argument above depends only on the parity of n

Conclusion: If n is odd, the bisector s of $\angle V$ is a line of symmetry
Angle Bisectors and Lines of Symmetry

- Argument above depends only on the parity of n

- **Conclusion**: *If n is odd, the bisector s of $\angle V$ is a line of symmetry*

- *A suitable edge tessellation has strictly even n-centers*
Argument above depends only on the parity of n

Conclusion: If n is odd, the bisector s of $\angle V$ is a line of symmetry.

A suitable edge tessellation has strictly even n-centers.

Even n-centers $\Rightarrow \theta \in S = \{x \mid nx = 180^\circ, \ n \geq 2\}$

$$= \{90^\circ, 60^\circ, 45^\circ, 36^\circ, 30^\circ, \ldots\}$$
Argument above depends only on the parity of n

Conclusion: If n is odd, the bisector s of $\angle V$ is a line of symmetry

A suitable edge tessellation has strictly even n-centers

Even n-centers $\Rightarrow \theta \in S = \{x \mid nx = 180^\circ, \ n \geq 2\}$

$$= \{90^\circ, 60^\circ, 45^\circ, 36^\circ, 30^\circ, \ldots\}$$

Only **non-obtuse** polygons generate suitable edge tessellations
Admissible Polygons

- Let g be the number of edges of G
Admissible Polygons

- Let g be the number of edges of G

- Interior angle sum: $180^\circ (g - 2) \leq 90^\circ g \Rightarrow g \leq 4$
Admissible Polygons

- Let g be the number of edges of G

- Interior angle sum: $180^\circ (g - 2) \leq 90^\circ g \Rightarrow g \leq 4$

- **Case** $g = 4$: Each interior angle $\theta_i \leq 90^\circ$
Admissible Polygons

- Let g be the number of edges of G

- Interior angle sum: $180^\circ (g - 2) \leq 90^\circ g \Rightarrow g \leq 4$

- **Case** $g = 4$: Each interior angle $\theta_i \leq 90^\circ$

- Interior angle sum of a quadrilateral: $360^\circ \Rightarrow \theta_i = 90^\circ$
Let g be the number of edges of G

Interior angle sum: $180° (g - 2) \leq 90° g \Rightarrow g \leq 4$

Case $g = 4$: Each interior angle $\theta_i \leq 90°$

Interior angle sum of a quadrilateral: $360° \Rightarrow \theta_i = 90°$

Conclusion: G is a rectangle
Admissible Right Triangles

- **Case** $g = 3 : G = \Delta ABC$
Admissible Right Triangles

- **Case** \(g = 3 \): \(G = \Delta ABC \)

- \(m\angle A \leq m\angle B \) and \(m\angle C = 90^\circ \)
Admissible Right Triangles

- **Case** $g = 3 : G = \triangle ABC$

- $m\angle A \leq m\angle B$ and $m\angle C = 90^\circ$

- $m\angle A + m\angle B = 90^\circ$
Admissible Right Triangles

- **Case** \(g = 3 : G = \triangle ABC \)

- \(m\angle A \leq m\angle B \) and \(m\angle C = 90^\circ \)

- \(m\angle A + m\angle B = 90^\circ \)

- \((m\angle A, m\angle B) \in S \times S \Rightarrow \)

 \[
 (m\angle A, m\angle B) \in \{(30^\circ, 60^\circ), (45^\circ, 45^\circ)\}
 \]
Admissible Right Triangles

- **Case** $g = 3 : G = \Delta ABC$

- $m\angle A \leq m\angle B$ and $m\angle C = 90^\circ$

- $m\angle A + m\angle B = 90^\circ$

- $(m\angle A, m\angle B) \in S \times S \Rightarrow$

 $$(m\angle A, m\angle B) \in \{(30^\circ, 60^\circ), (45^\circ, 45^\circ)\}$$

- **Conclusion:** G is a 60°-right or an isosceles-right triangle
Each interior angle $\theta_i \leq 60^\circ$
Each interior angle $\theta_i \leq 60^\circ$

Interior angle sum of a triangle: $180^\circ \Rightarrow \theta_i = 60^\circ$
Admissible Acute Triangles

- Each interior angle $\theta_i \leq 60^\circ$

- Interior angle sum of a triangle: $180^\circ \Rightarrow \theta_i = 60^\circ$

- \textit{G is a equilateral triangle}
Admissible Acute Triangles

- Each interior angle $\theta_i \leq 60^\circ$
- Interior angle sum of a triangle: $180^\circ \Rightarrow \theta_i = 60^\circ$
- G is a equilateral triangle
- The proof is complete
Recap:

Exactly four shapes are suitable for stamp folding puzzles:

Rectangles; equilateral, isosceles right, 60°-right triangles.
Thank you!