Transferring A_∞-Structures from Chains to Homology

Joint work with Samson Saneblidze

Ron Umble
Univ de Sevilla and Millersville Univ of PA

4D Digital Imaging Seminar

24 September 2009
Goal of the Talk

To understand the following statement:

Theorem. *If* A *is an* A_∞-*structure over a field* k, *there is an induced* A_∞-*structure on* $H(A; k)$.
To understand the following statement:

- **Theorem.** If A is an A_∞-structure over a field k, there is an induced A_∞-structure on $H(A; k)$.

- Many have studied the transfer of A_∞-algebra structure, including Kadeishvili, Huebschmann, Kontsevich, Soibelman, Merkulov, Markl, Real, M-J Jiménez, Berciano, to name a few...
Goal of the Talk

To understand the following statement:

- **Theorem.** If A is an A_∞-structure over a field k, there is an induced A_∞-structure on $H(A; k)$.

- Many have studied the transfer of A_∞-algebra structure, including Kadeishvili, Huebschmann, Kontsevich, Soibelman, Merkulov, Markl, Real, M-J Jiménez, Berciano, to name a few...

- Saneblidze observed that the "Transfer Problem" is simpler at the level of hom groups
Goal of the Talk

To understand the following statement:

- **Theorem.** If A is an A_∞-structure over a field k, there is an induced A_∞-structure on $H(A; k)$.

- Many have studied the transfer of A_∞-algebra structure, including Kadeishvili, Huebschmann, Kontsevich, Soibelman, Merkulov, Markl, Real, M-J Jiménez, Berciano, to name a few...

- Saneblidze observed that the "Transfer Problem" is simpler at the level of hom groups

- Our method relaxes the conditions under which the transfer of A_∞-algebra structure occurs, and transfers A_∞-bialgebra structure as well
Cellular chains on associahedra $K = \{K_n\}_{n \geq 2}$ realize the operad A_∞
Cellular chains on associahedra $K = \{K_n\}_{n \geq 2}$ realize the operad A_∞

$\dim (K_n) = n - 2$
Background: A-infinity Algebras

- Cellular chains on associahedra $K = \{K_n\}_{n \geq 2}$ realize the operad \mathcal{A}_∞

- $\dim (K_n) = n - 2$

- An A_∞-algebra is a DGM (A, d) together with a family of operations

$$\{\mu^n \in \text{Hom}^{n-2}(A^{\otimes n}, A)\}_{n \geq 2}$$

and a map $\varphi : \mathcal{A}_\infty \rightarrow \{\text{Hom}(A^{\otimes n}, A)\}_{n \geq 1}$ of non-Σ operads
Background: A-infinity Bialgebras

- Cellular chains on matrashedra $KK = \{KK_{n,m}\}$ realize the matrad \mathcal{H}_∞
Cellular chains on matrahedra $KK = \{KK_{n,m}\}$ realize the matrad \mathcal{H}_∞

$\dim (KK_{n,m}) = m + n - 3$
Background: A-infinity Bialgebras

- Cellular chains on matrahedra $KK = \{KK_{n,m}\}$ realize the matrad \mathcal{H}_∞

- $\dim (KK_{n,m}) = m + n - 3$

- An A_∞-bialgebra is DGM (H, d) together with a family of operations

 \[\{ \omega_m^n \in \text{Hom}^{m+n-3} (H^\otimes m, H^\otimes n) \}_{m,n \geq 1; m+n \geq 3} \]

 and a map $\varphi : \mathcal{H}_\infty \rightarrow \text{End} (TH)$ of matrads
Given DGMs \((A, d_A)\) and \((B, d_B)\), define \(\nabla\) on \(\text{Hom}(B, A)\) by

\[
\nabla(u) = d_A u - (-1)^{|u|} ud_B
\]
Given DGMs \((A, d_A)\) and \((B, d_B)\), define \(\nabla\) on \(\text{Hom}(B, A)\) by
\[
\nabla(u) = d_A u - (-1)^{|u|} u d_B
\]

A chain map \(g : B \to A\) induces a cochain map
\[
\tilde{g} : (\text{Hom}(B^\otimes n, B) ; \nabla_B) \to (\text{Hom}(B^\otimes n, A) ; \nabla)
\]
via \(g(u) = gu\)
Introduction and Overview

- Given DGMs \((A, d_A)\) and \((B, d_B)\), define \(\nabla\) on \(\text{Hom}(B, A)\) by
 \[
 \nabla(u) = d_A u - (-1)^{|u|} u d_B
 \]

- A chain map \(g : B \to A\) induces a cochain map
 \[
 \bar{g} : (\text{Hom}(B^\otimes n, B); \nabla_B) \to (\text{Hom}(B^\otimes n, A); \nabla
 \]
 via \(g(u) = gu\)

- **Theorem 1.** Let \(A\) be an \(A_\infty\)-algebra, \(B\) be a DGM, and \(g : B \to A\) be a chain map. If \(\bar{g}\) is a quasi-isomorphism, then \(g\) induces an \(A_\infty\)-algebra structure on \(B\).
Given DGMs \((A, d_A)\) and \((B, d_B)\), define \(\nabla\) on \(\text{Hom}(B, A)\) by
\[
\nabla(u) = d_A u - (-1)^{|u|} u d_B
\]

A chain map \(g : B \to A\) induces a cochain map
\[
\tilde{g} : (\text{Hom}(B \otimes^n, B) ; \nabla_B) \to (\text{Hom}(B \otimes^n, A) ; \nabla)
\]
via \(g(u) = gu\)

Theorem 1. Let \(A\) be an \(A_\infty\)-algebra, \(B\) be a DGM, and \(g : B \to A\) be a chain map. If \(\tilde{g}\) is a quasi-isomorphism, then \(g\) induces an \(A_\infty\)-algebra structure on \(B\).

If \(\tilde{g}\) is a quasi-isomorphism, so is \(g\), but not conversely.
Introduction and Overview

- Given DGMs \((A, d_A)\) and \((B, d_B)\), define \(\nabla\) on \(\text{Hom}(B, A)\) by
 \[
 \nabla(u) = d_A u - (-1)^{|u|} u d_B
 \]

- A chain map \(g : B \to A\) induces a cochain map
 \[
 \bar{g} : \left(\text{Hom}(B^\otimes n, B) ; \nabla_B\right) \to \left(\text{Hom}(B^\otimes n, A) ; \nabla\right)
 \]
 via \(g(u) = gu\)

Theorem 1. Let \(A\) be an \(A_\infty\)-algebra, \(B\) be a DGM, and \(g : B \to A\) be a chain map. If \(\bar{g}\) is a quasi-isomorphism, then \(g\) induces an \(A_\infty\)-algebra structure on \(B\).

- If \(\bar{g}\) is a quasi-isomorphism, so is \(g\), but not conversely

- However, the converse holds whenever \(B\) is free
Kadeishvili and others assume B is free
Kadeishvili and others assume B is free

Markl assumes g has a right-homotopy inverse f

$$1 - gf = d_A \phi + \phi d_A$$
• Kadeishvili and others assume B is free

• Markl assumes g has a right-homotopy inverse f

\[1 - gf = d_A\phi + \phi d_A \]

• All assume there is a homotopy operator $\phi : A \to A$
Kadeishvili and others assume B is free

Markl assumes g has a right-homotopy inverse f

$$1 - gf = d_A \phi + \phi d_A$$

All assume there is a homotopy operator $\phi : A \to A$

Our algorithm requires neither freeness nor a homotopy operator
Kadeishvili and others assume B is free

Markl assumes g has a right-homotopy inverse f

$$1 - gf = d_A \phi + \phi d_A$$

All assume there is a homotopy operator $\phi : A \to A$

Our algorithm requires neither freeness nor a homotopy operator

$B = H(A)$ is an important special case of interest in this talk
Corollary 1. Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^k \text{Hom}(H^\otimes k, X) = 0$ for $k \geq 2$, there is an induced A_∞-algebra structure on H.

Example 1. We exhibit a DGA A with an induced non-trivial A_∞-algebra structure on $H(A)$ that cannot be computed using standard techniques.

Corollary 2. Given an A_∞-bialgebra A over a field k, there is an induced A_∞-bialgebra structure on H.

Example 2. Let X be a space. There is an induced A_∞-bialgebra structure on $H(\Omega X; k)$.

(4D Digital Imaging Seminar)
Transferring A_∞-Structures

24 September 2009
Corollary 1. Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^*\text{Hom}(H^\otimes k, X) = 0$ for $k \geq 2$, there is an induced A_∞-algebra structure on H.

Example 1. We exhibit a DGA A with an induced non-trivial A_∞-algebra structure on $H(A)$ that cannot be computed using standard techniques.
Key Points in the Talk

- **Corollary 1.** Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^* \text{Hom}(H^\otimes k, X) = 0$ for $k \geq 2$, there is an induced A_∞-algebra structure on H.

- **Example 1.** We exhibit a DGA A with an induced non-trivial A_∞-algebra structure on $H(A)$ that cannot be computed using standard techniques.

- **Corollary 2.** Given an A_∞-bialgebra A over a field k, there is an induced A_∞-bialgebra structure on H.

Key Points in the Talk

- **Corollary 1.** Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^* \text{Hom}(H \otimes^k, X) = 0$ for $k \geq 2$, there is an induced A_∞-algebra structure on H.

- **Example 1.** We exhibit a DGA A with an induced non-trivial A_∞-algebra structure on $H(A)$ that cannot be computed using standard techniques.

- **Corollary 2.** Given an A_∞-bialgebra A over a field k, there is an induced A_∞-bialgebra structure on H.

- **Example 2.** Let X be a space. There is an induced A_∞-bialgebra structure on $H_*(\Omega X; k)$.
Given A_{∞}-algebras A and B, and a chain map $g : B \to A$, a morphism

$$G = g + g_2 + g_3 + \cdots : B \Rightarrow A$$

is defined in terms of parameter spaces $\{J_n\}_{n \geq 1}$, called multiplihedra.
Given A_∞-algebras A and B, and a chain map $g : B \to A$, a morphism

$$G = g + g_2 + g_3 + \cdots : B \Rightarrow A$$

is defined in terms of parameter spaces $\{J_n\}_{n \geq 1}$, called multiplihedra.

- $J_1 = \ast$ is identified with the cochain $g \in Hom^0(B, A)$
Given A_∞-algebras A and B, and a chain map $g : B \to A$, a morphism

$$G = g + g_2 + g_3 + \cdots : B \Rightarrow A$$

is defined in terms of parameter spaces $\{J_n\}_{n \geq 1}$, called *multiplihedra*.

- $J_1 = \ast$ is identified with the cochain $g \in \text{Hom}^0 (B, A)$
- $J_2 = I$ is identified with the cochain $g_2 \in \text{Hom}^1 (B \otimes B, A)$
Given A_∞-algebras A and B, and a chain map $g : B \to A$, a morphism

$$G = g + g_2 + g_3 + \cdots : B \Rightarrow A$$

is defined in terms of parameter spaces $\{J_n\}_{n \geq 1}$, called multiplihedra.

- $J_1 = \ast$ is identified with the cochain $g \in Hom^0 (B, A)$

- $J_2 = I$ is identified with the cochain $g_2 \in Hom^1 (B \otimes B, A)$

- The endpoints of J_2 are identified with components of the coboundary

$$\nabla g_2 = \mu_A (g \otimes g) - g \mu_B$$
J_3 is an hexagonal plane region identified with $g_3 \in Hom^2 (B \otimes^3, A)$

\[g \mu^3_B \]

\[g_2 (\mu_B \otimes 1) \]
\[g_2 (1 \otimes \mu_B) \]
\[\mu_A (g_2 \otimes g) \]
\[\mu_A (g \otimes g_2) \]
\[\mu^3_A (g \otimes g \otimes g) \]

\[\nabla g_3 = \mu^3_A g \otimes^3 + \mu_A (g_2 \otimes g - g \otimes g_2) + g_2 (\mu_B \otimes 1 - 1 \otimes \mu_B) - g \mu^3_B \]
J_n is $(n - 1)$-dimensional and identified with $g_n \in Hom^{n-1}(B^\otimes n, A)$
J_n is $(n - 1)$-dimensional and identified with $g_n \in \text{Hom}^{n-1}(B^{\otimes n}, A)$

The operations μ^k_B that appear in ∇g_n have order $k \leq n$
\(J_n \) is \((n-1) \)-dimensional and identified with \(g_n \in \text{Hom}^{n-1}(B \otimes^n, A) \)

The operations \(\mu^k_B \) that appear in \(\nabla g_n \) have order \(k \leq n \)

\(\mu^n_B \) appears in exactly one component of \(\nabla g_n \), namely \(g \mu^n_B \)
A–infinity Maps and Multiplihedra

- J_n is $(n - 1)$-dimensional and identified with $g_n \in \text{Hom}^{n-1}(B^{\otimes n}, A)$
- The operations μ^k_B that appear in ∇g_n have order $k \leq n$
- μ^n_B appears in exactly one component of ∇g_n, namely $g \mu^n_B$
- Let Q^{n-2} denote the cell of J_n identified with the cochain $g \mu^n_B$
- J_n is $(n - 1)$-dimensional and identified with $g_n \in \text{Hom}^{n-1}(B^\otimes n, A)$

- The operations μ^k_B that appear in ∇g_n have order $k \leq n$

- μ^n_B appears in exactly one component of ∇g_n, namely $g \mu^n_B$

- Let Q^{n-2} denote the cell of J_n identified with the cochain $g \mu^n_B$

- Let \ominus_n denote the cochain identified with $\partial J_n - \text{int} Q^{n-2}$
J_n is \((n - 1)\)-dimensional and identified with \(g_n \in \text{Hom}^{n-1}(B \otimes^n, A)\).

- The operations \(\mu^k_B\) that appear in \(\nabla g_n\) have order \(k \leq n\).
- \(\mu^n_B\) appears in exactly one component of \(\nabla g_n\), namely \(g \mu^n_B\).
- Let \(Q^{n-2}\) denote the cell of \(J_n\) identified with the cochain \(g \mu^n_B\).
- Let \(\Theta_n\) denote the cochain identified with \(\partial J_n - \text{int} Q^{n-2}\).
- Then \(\partial Q^{n-2}\) is identified with the coboundary \(\nabla \Theta_n\).
Transfer Problem 1: Let A be an A_{∞}-algebra, let B be a DGM, and let $g : B \to A$ be a chain map. Given $\{\mu^i_B, g_i\}_{2 \leq i \leq n}$ construct μ^n_B and g_n so that

$$\nabla g_n = \Theta_n - g \mu^n_B$$
First Transfer Theorem

- **Transfer Problem 1:** Let A be an A_∞-algebra, let B be a DGM, and let $g : B \to A$ be a chain map. Given $\{\mu^i_B, g_i\}_{2 \leq i \leq n}$ construct μ^n_B and g_n so that

\[\nabla g_n = \Theta_n - g \mu^n_B \]

- Transfer Problem 1 has a solution whenever \bar{g} is a quasi-isomorphism.
First Transfer Theorem

- **Transfer Problem 1:** Let A be an A_∞-algebra, let B be a DGM, and let $g : B \to A$ be a chain map. Given $\{\mu_B^i, g_i\}_{2 \leq i < n}$ construct μ^n_B and g_n so that

$$\nabla g_n = \Theta_n - g \mu^n_B$$

- Transfer Problem 1 has a solution whenever \bar{g} is a quasi-isomorphism

- **Theorem 1.** If \bar{g} is a quasi-isomorphism, then

 (i) g transfers the A_∞-algebra structure from A to B; the induced structure on B is unique up to automorphism.

 (ii) g extends to a map $G : B \Rightarrow A$ of A_∞-algebras.
Proposition 1. Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^* \text{Hom}(H^{\otimes k}, X) = 0$ for $k \geq 2$, there is a cycle-selecting homomorphism $g : H \to A$ such that \bar{g} is a quasi-isomorphism.
Proposition 1. Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^* \text{Hom} \left(H^k, X \right) = 0$ for $k \geq 2$, there is a cycle-selecting homomorphism $g : H \to A$ such that \bar{g} is a quasi-isomorphism.

Corollary 1. Let A be an A_∞-algebra and let $H = H(A)$. If $A = H \oplus X$ and $H^* \text{Hom} \left(H^k, X \right) = 0$ for $k \geq 2$, there is an induced A_∞-algebra structure on H.
Let \((A, d, \mu^n)_{n \geq 2}\) be an \(A_\infty\)-algebra, \(g : H \to A\) a cycle-selecting hom, and assume that an \(A_\infty\)-structure \((H, \mu^n_H)_{n \geq 2}\) has been constructed.

- Thinking of \(g \in \text{Hom}(H, A)\), note that \(\nabla g = dg = 0\)
Let \((A, d, \mu^n)_{n \geq 2}\) be an \(A_\infty\)-algebra, \(g : H \to A\) a cycle-selecting hom, and assume that an \(A_\infty\)-structure \((H, \mu^n_H)_{n \geq 2}\) has been constructed.

- Thinking of \(g \in \text{Hom}(H, A)\), note that \(\nabla g = dg = 0\)

- \(\Theta_2 = \mu(g \otimes g) \in \text{Hom}^0(H \otimes H, A)\)
Let \((A, d, \mu^n)_{n \geq 2}\) be an \(A_\infty\)-algebra, \(g : H \rightarrow A\) a cycle-selecting hom, and assume that an \(A_\infty\)-structure \((H, \mu^n_H)_{n \geq 2}\) has been constructed.

- Thinking of \(g \in \text{Hom}(H, A)\), note that \(\nabla g = dg = 0\)

- \(\otimes_2 = \mu(g \otimes g) \in \text{Hom}^0(H \otimes H, A)\)

- \(\nabla \otimes_2 = d\mu(g \otimes g) = \mu(dg \otimes g + g \otimes dg) = 0\)
For $n \geq 3$, recall that $g\mu^n_H$ is identified with Q^{n-2}.
For $n \geq 3$, recall that $g \mu^n_H$ is identified with Q^{n-2}

$\bigodot_n \in Hom^{n-2} (H \otimes^n, A)$ is identified with $\partial J_n - \text{int } Q^{n-2}$
For $n \geq 3$, recall that $g\mu^n_H$ is identified with Q^{n-2}

$\ominus_n \in \text{Hom}^{n-2}(H^\otimes n, A)$ is identified with $\partial J_n - \text{int} \ Q^{n-2}$

Since $\partial (\partial J_n - \text{int} \ Q^{n-2}) = \partial Q^{n-2}$ we have
For $n \geq 3$, recall that $g\mu^n_H$ is identified with Q^{n-2}

$\ominus_n \in \text{Hom}^{n-2}(H \otimes^n, A)$ is identified with $\partial J_n - \text{int} Q^{n-2}$

Since $\partial (\partial J_n - \text{int} Q^{n-2}) = \partial Q^{n-2}$ we have

$\nabla \ominus_n = \nabla g\mu^n_H = d g\mu^n_H = 0$
For $n \geq 3$, recall that $g\mu^n_H$ is identified with Q^{n-2}

$\exists_n \in \text{Hom}^{n-2}(H\otimes^n, A)$ is identified with $\partial J_n - \text{int} Q^{n-2}$

Since $\partial (\partial J_n - \text{int} Q^{n-2}) = \partial Q^{n-2}$ we have

$\nabla \exists_n = \nabla g\mu^n_H = dg\mu^n_H = 0$

Therefore \exists_n is a cocycle for all $n \geq 2$
Computing the Transfer: The Fundamental Cocycle

- For \(n \geq 3 \), recall that \(g\mu_H^n \) is identified with \(Q^{n-2} \)
- \(\Theta_n \in \text{Hom}^{n-2}(H^{\otimes n}, A) \) is identified with \(\partial J_n - \text{int} \ Q^{n-2} \)
- Since \(\partial (\partial J_n - \text{int} \ Q^{n-2}) = \partial Q^{n-2} \) we have
- \(\nabla \Theta_n = \nabla g\mu_H^n = d\mu^n_H = 0 \)
- Therefore \(\Theta_n \) is a cocycle for all \(n \geq 2 \)
- We refer to \(\Theta_n \) as the fundamental \(n \)-cocycle
Now suppose \tilde{g} is a quasi-isomorphism

- For $n \geq 2$, assume that $\{\mu^i_H, g_i\}_{2 \leq i < n}$ has been constructed

Solve the linear system $dx = n \mu^i_H g_i$

Choose a particular solution g_n

Then $g + g_2 + \ldots + g_n$ is an A_∞-map
Now suppose \tilde{g} is a quasi-isomorphism

- For $n \geq 2$, assume that $\{\mu^i_H, g_i\}_{2 \leq i < n}$ has been constructed.

- Since $\nabla \Theta_n = 0$, we may define $\mu^n_H = (\tilde{g}_*)^{-1} [\Theta_n]$.
Now suppose \tilde{g} is a quasi-isomorphism

- For $n \geq 2$, assume that $\{\mu^i_H, g_i\}_{2 \leq i < n}$ has been constructed.

- Since $\nabla \Theta_n = 0$, we may define $\mu^n_H = (\tilde{g}_*)^{-1} [\Theta_n]$.

- Then $g \mu^n_H \in [\Theta_n]$ and $\Theta_n - g \mu^n_H$ is a coboundary.
Computing the Transfer: The Induction

Now suppose \tilde{g} is a quasi-isomorphism

- For $n \geq 2$, assume that $\{\mu^i_H, g_i\}_{2 \leq i < n}$ has been constructed

- Since $\nabla \Theta_n = 0$, we may define $\mu^n_H = (\tilde{g}_*)^{-1} [\Theta_n]$

- Then $g\mu^n_H \in [\Theta_n]$ and $\Theta_n - g\mu^n_H$ is a coboundary

- Solve the linear system $dx = \Theta_n - g\mu^n_H$
Computing the Transfer: The Induction

Now suppose \(\bar{g} \) is a quasi-isomorphism

- For \(n \geq 2 \), assume that \(\{ \mu_i^i, g_i \}_{2 \leq i < n} \) has been constructed

- Since \(\nabla \Theta_n = 0 \), we may define \(\mu^n_H = (\bar{g}_*)^{-1} [\Theta_n] \)

- Then \(g\mu^n_H \in [\Theta_n] \) and \(\Theta_n - g\mu^n_H \) is a coboundary

- Solve the linear system \(dx = \Theta_n - g\mu^n_H \)

- Choose a particular solution \(g_n \)
Computing the Transfer: The Induction

Now suppose \tilde{g} is a quasi-isomorphism

- For $n \geq 2$, assume that $\{\mu_{\tilde{g}}^i, g_i\}_{2 \leq i < n}$ has been constructed.

- Since $\nabla \Theta_n = 0$, we may define $\mu^n_H = (\tilde{g}_*)^{-1} [\Theta_n]$.

- Then $g\mu^n_H \in [\Theta_n]$ and $\Theta_n - g\mu^n_H$ is a coboundary.

- Solve the linear system $dx = \Theta_n - g\mu^n_H$.

- Choose a particular solution g_n.

- Then $g + g_2 + \cdots + g_n$ is an A_n-map.
Example 1. Consider the DGM

\[
\begin{array}{ccccccccc}
M^0 & \to & 0 & \to & M^2 & \to & M^3 & \to & M^4 & \to & 0 & \to & \cdots \\
Z & \to & \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \to & \mathbb{Z}_4 & \to & \mathbb{Z}_2 \\
(a_2, b_2) & \mapsto & (0, 2a_3) & & a_3 & \mapsto & a_4
\end{array}
\]
Example 1. Consider the DGM

\[M^0 \to 0 \to M^2 \to M^3 \to M^4 \to 0 \to \cdots \]

\[
\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \mathbb{Z}_4 & \mathbb{Z}_2 \\
(a_2, b_2) & (0, 2a_3) & a_3 & a_4
\end{array}
\]

\[A = T^a M / (a_2^2 + a_4, a_3^2, a_4a_3 + a_3a_4, (a_2a_3 + a_3a_2)^2, a_ib_2, b_2a_i, b_2^2) \]
Example 1. Consider the DGM

\[M^0 \rightarrow 0 \rightarrow M^2 \rightarrow M^3 \rightarrow M^4 \rightarrow 0 \rightarrow \cdots \]

\[
\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \mathbb{Z}_4 & \mathbb{Z}_2 \\
(a_2, b_2) & (0, 2a_3) & a_3 & a_4
\end{array}
\]

\[A = T^a M / (a_2^2 + a_4, a_3^2, a_4a_3 + a_3a_4, (a_2a_3 + a_3a_2)^2, a_ib_2, b_2a_i, b_2^2) \]

\[A \text{ has no Hodge decomposition since } \mathbb{Z}_4 \text{ contains a non-cycle } a_3 \text{ and a boundary } 2a_3. \text{ But } \mathbb{Z}_4 \text{ does not split as } \mathbb{Z}_2 \oplus \mathbb{Z}_2. \]
Example 1. Consider the DGM

\[M^0 \rightarrow 0 \rightarrow M^2 \rightarrow M^3 \rightarrow M^4 \rightarrow 0 \rightarrow \cdots \]

\[\mathbb{Z} \rightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_2 \rightarrow \mathbb{Z}_4 \rightarrow \mathbb{Z}_2 \]

\[(a_2, b_2) \mapsto (0, 2a_3) \]

\[a_3 \mapsto a_4 \]

\[A = \frac{T^a M}{(a_2^2 + a_4, a_3^2, a_4 a_3 + a_3 a_4, (a_2 a_3 + a_3 a_2)^2, a_i b_2, b_2 a_i, b_2^2)} \]

\[A \text{ has no Hodge decomposition since } \mathbb{Z}_4 \text{ contains a non-cycle } a_3 \text{ and a boundary } 2a_3. \text{ But } \mathbb{Z}_4 \text{ does not split as } \mathbb{Z}_2 \oplus \mathbb{Z}_2. \]

\[H^n (A) = \begin{cases}
\mathbb{Z} & n = 0, \\
\mathbb{Z}_2 & n = 2, 5, 7 \\
0 & \text{otherwise}
\end{cases} \]
A Cycle-Selecting Homomorphism g

- Denote the module generators of $H = H(A)$ by

$$
\begin{align*}
1 &= [1] \in H^0 \\
u &= [a_2] \in H^2 \\
v &= [a_2a_3 + a_3a_2] \in H^5 \\
w &= [a_2(a_2a_3 + a_3a_2)] \in H^7
\end{align*}
$$
A Cycle-Selecting Homomorphism g

- Denote the module generators of $H = H(A)$ by

\[
1 = [1] \in H^0 \\
u = [a_2] \in H^2 \\
v = [a_2a_3 + a_3a_2] \in H^5 \\
w = [a_2(a_2a_3 + a_3a_2)] \in H^7
\]

- Define a cycle-selecting homomorphism $g : H \to A$ by

\[
g(1) = 1 \\
g(u) = a_2 \\
g(v) = a_2a_3 + a_3a_2 \\
g(w) = a_2(a_2a_3 + a_3a_2)
\]
Suppose g has a right-homotopy inverse f
g has no Right-Homotopy Inverse

- Suppose g has a right-homotopy inverse f

- Then $gf(b_2) = \lambda a_2$ implies

$$b_2 - \lambda a_2 = (1 - gf)(b_2)$$
$$= (sd + ds)(b_2)$$
$$= sd(b_2) = s(2a_3) = 2s(a_3) = 0,$$

which is a contradiction
Suppose g has a right-homotopy inverse f

Then $gf (b_2) = \lambda a_2$ implies

$$b_2 - \lambda a_2 = (1 - gf)(b_2)$$
$$= (sd + ds) (b_2)$$
$$= sd (b_2) = s (2a_3) = 2s (a_3) = 0,$$

which is a contradiction

Transfer of structure in Example 1 cannot be computed using standard techniques
Induced DGA Structure

$\tilde{g} : \text{Hom}(H^\otimes 2, H) \to \text{Hom}(H^\otimes 2, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H$</td>
<td>u , u</td>
<td>$u , v, , v , u$</td>
<td>$u , w, , w , u$</td>
<td>v , v</td>
<td>$v , w, , w , v$</td>
<td>w , w</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Induced DGA Structure

- $\tilde{g} : \text{Hom}(H \otimes 2, H) \rightarrow \text{Hom}(H \otimes 2, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H$</td>
<td>$u \mid u$</td>
<td>$u \mid v, v \mid u$</td>
<td>$u \mid w, w \mid u$</td>
<td>$v \mid v$</td>
<td>$v \mid w, w \mid v$</td>
<td>$w \mid w$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Evaluate \tilde{g} on basis $\left\{ u \mid v \mapsto w, v \mid u \mapsto w \right\} \subset \text{Hom}^0(H \otimes 2, H)$ and evaluate $\Theta_2 = \mu(g \otimes g)$ on basis $\{u \mid v, v \mid u\}$ in degree 7

\[
\begin{align*}
 u \mid v \overset{w \partial_u \mid v}{\mapsto} w \overset{\tilde{g}}{\mapsto} a_2 (a_2 a_3 + a_3 a_2) &= \Theta_2 (u \mid v) \\
 v \mid u \overset{w \partial_v \mid u}{\mapsto} w \overset{\tilde{g}}{\mapsto} (a_2 a_3 + a_3 a_2) a_2 &= \Theta_2 (v \mid u)
\end{align*}
\]
Induced DGA Structure

- $\tilde{g} : \text{Hom} (H \otimes^2, H) \rightarrow \text{Hom} (H \otimes^2, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H$</td>
<td>$u \cdot u$</td>
<td>$u \cdot v$, $v \cdot u$</td>
<td>$u \cdot w$, $w \cdot u$</td>
<td>$v \cdot v$</td>
<td>$v \cdot w$, $w \cdot v$</td>
<td>$w \cdot w$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Evaluate \tilde{g} on basis $\left\{ u \cdot v \stackrel{w \partial_{u|v}}{\mapsto} w, \ v \cdot u \stackrel{w \partial_{v|u}}{\mapsto} w \right\} \subset \text{Hom}^0 (H \otimes^2, H)$ and evaluate $\Theta_2 = \mu (g \otimes g)$ on basis $\{u \cdot v, v \cdot u\}$ in degree 7

\[
\begin{align*}
 u \cdot v & \mapsto w \mapsto a_2 (a_2 a_3 + a_3 a_2) = \Theta_2 (u \cdot v) \\
 v \cdot u & \mapsto w \mapsto (a_2 a_3 + a_3 a_2) a_2 = \Theta_2 (v \cdot u)
\end{align*}
\]

- Thinking of $w \partial_{u|v} + w \partial_{v|u}$ as a class, $\tilde{g}_*(w \partial_{u|v} + w \partial_{v|u}) = [\Theta_2]$
Induced DGA Structure

\[\tilde{g} : \text{Hom} \left(H \otimes^2, H \right) \rightarrow \text{Hom} \left(H \otimes^2, A \right) \]

is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H \otimes H</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>v</td>
<td>v</td>
<td>u</td>
<td>w</td>
<td>w</td>
</tr>
</tbody>
</table>

Evaluate \(\tilde{g} \) on basis \(\left\{ u|v \mapsto w, v|u \mapsto w \right\} \subseteq \text{Hom}^0 \left(H \otimes^2, H \right) \)

and evaluate \(\Theta_2 = \mu \left(g \otimes g \right) \) on basis \(\left\{ u|v, v|u \right\} \) in degree 7

\[u|v \overset{\tilde{g}}{\mapsto} w \overset{w \partial_{u|v}}{\mapsto} a_2 \left(a_2 a_3 + a_3 a_2 \right) = \Theta_2 \left(u|v \right) \]

\[v|u \overset{\tilde{g}}{\mapsto} w \overset{w \partial_{v|u}}{\mapsto} \left(a_2 a_3 + a_3 a_2 \right) a_2 = \Theta_2 \left(v|u \right) \]

Thinking of \(w \partial_{u|v} + w \partial_{v|u} \) as a class, \(\tilde{g}_* \left(w \partial_{u|v} + w \partial_{v|u} \right) = \left[\Theta_2 \right] \)

Define \(\mu_H = \left(\tilde{g}_* \right)^{-1} \left[\Theta_2 \right] = w \partial_{u|v} + w \partial_{v|u} \); then \(uv = vu = w \)
Extending g to an $A(2)$-map

The non-trivial values of $\mu (g \otimes g) - g \mu_H$ are

$$a_2^2 \partial_{u|u}, \ (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w}, \text{ and } (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}$$
Extending g to an $A(2)$-map

- The non-trivial values of $\mu (g \otimes g) - g \mu_H$ are
 \[a_2^2 \partial_{u|u}, \ (a_2 a_3 + a_3 a_2^3) \partial_{u|w}, \text{ and } (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u} \]

- These cocycles cobound

\[
\nabla (a_3 \partial_{u|u}) = da_3 \partial_{u|u} = a_2^2 \partial_{u|u} \\
\nabla (a_3 a_2 a_3 \partial_{u|w}) = d (a_3 a_2 a_3) \partial_{u|w} = (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w} \\
\nabla (a_3 a_2 a_3 \partial_{w|u}) = d (a_3 a_2 a_3) \partial_{w|u} = (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}
\]
The non-trivial values of $\mu (g \otimes g) - g \mu_H$ are

\[
a_2^2 \partial_{u|_u}, \quad (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w}, \quad \text{and} \quad (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}
\]

These cocycles cobound

\[
\nabla \left(a_3 \partial_{u|u} \right) = d a_3 \partial_{u|u} = a_2^2 \partial_{u|u} \\
\nabla \left(a_2 a_3 \partial_{u|w} \right) = d \left(a_2 a_3 \right) \partial_{u|w} = (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w} \\
\nabla \left(a_2 a_3 \partial_{w|u} \right) = d \left(a_2 a_3 \right) \partial_{w|u} = (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}
\]

Thus we define

\[
g_2 = a_3 \partial_{u|u} + a_2 a_3 \left(\partial_{u|w} + \partial_{w|u} \right)
\]
Extending \(g \) to an \(A(2) \)-map

- The non-trivial values of \(\mu (g \otimes g) - g \mu_H \) are

\[
a_2^2 \partial_{u|u}, \quad (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w}, \text{ and } (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}
\]

- These cocycles cobound

\[
\nabla (a_3 \partial_{u|u}) = da_3 \partial_{u|u} = a_2^2 \partial_{u|u} \\
\nabla (a_3 a_2 a_3 \partial_{u|w}) = d (a_3 a_2 a_3) \partial_{u|w} = (a_2^3 a_3 + a_3 a_2^3) \partial_{u|w} \\
\nabla (a_3 a_2 a_3 \partial_{w|u}) = d (a_3 a_2 a_3) \partial_{w|u} = (a_2^3 a_3 + a_3 a_2^3) \partial_{w|u}
\]

- Thus we define

\[
g_2 = a_3 \partial_{u|u} + a_3 a_2 a_3 (\partial_{u|w} + \partial_{w|u})
\]

- Then \(\nabla g_2 = \mu (g \otimes g) - g \mu_H \) and \(g + g_2 \) is an \(A_2 \)-map
Induced $A(3)$-structure

- $\mu^3 = 0$ implies $\Theta_3 = \mu (\mu_\mu \otimes g - g \otimes \mu_\mu) + \mu_\mu (\mu_H \otimes 1 - 1 \otimes \mu_H)$
Induced $A(3)$-structure

- $\mu^3 = 0$ implies $\Theta_3 = \mu (g_2 \otimes g - g \otimes g_2) + g_2 (\mu_H \otimes 1 - 1 \otimes \mu_H)$

- $\bar{g} : \text{Hom} (H^\otimes 3, H) \rightarrow \text{Hom} (H^\otimes 3, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H \otimes H$</td>
<td>$u</td>
<td>u</td>
<td>u$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Induced $A(3)$-structure

- $\mu^3 = 0$ implies $\bigotimes_3 = \mu \left(g_2 \otimes g - g \otimes g_2 \right) + g_2 \left(\mu_H \otimes 1 - 1 \otimes \mu_H \right)$

- $\tilde{g} : \text{Hom} \left(H \otimes^3, H \right) \rightarrow \text{Hom} \left(H \otimes^3, A \right)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H \otimes H$</td>
<td>$u</td>
<td>u</td>
<td>u$</td>
<td>⋯</td>
<td></td>
</tr>
</tbody>
</table>

- Evaluate \tilde{g} on the basis $\left\{ u|u|u \right\}$ for $\text{Hom}^{-1} \left(H \otimes^3, H \right)$ and evaluate \bigotimes_3 on the basis $\left\{ u|u|u \right\}$ in degree 6

$$u|u|u \xrightarrow{v \partial_{u|u|u}} v \xrightarrow{\tilde{g}} a_2 a_3 + a_3 a_2 = \bigotimes_3 (u|u|u)$$
Induced $A(3)$-structure

- $\mu^3 = 0$ implies $\Theta_3 = \mu (g_2 \otimes g - g \otimes g_2) + g_2 (\mu_H \otimes 1 - 1 \otimes \mu_H)$

- $\tilde{g} : \text{Hom}(H^\otimes 3, H) \rightarrow \text{Hom}(H^\otimes 3, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H \otimes H$</td>
<td>$u</td>
<td>u</td>
<td>u$</td>
<td>\cdots</td>
<td></td>
</tr>
</tbody>
</table>

- Evaluate \tilde{g} on the basis $\left\{ u|u|u \rightarrow^{v\partial_{u|u|u}} v \right\}$ for $\text{Hom}^{-1}(H^\otimes 3, H)$ and evaluate Θ_3 on the basis $\{u|u|u\}$ in degree 6

$$u|u|u \overset{v\partial_{u|u|u}}{\rightarrow} v \overset{\tilde{g}}{\mapsto} a_2a_3 + a_3a_2 = \Theta_3(u|u|u)$$

- Thinking of $v\partial_{u|u|u}$ as a class: $\tilde{g}_*(v\partial_{u|u|u}) = [\Theta_3]$
Induced $A(3)$-structure

- $\mu^3 = 0$ implies $\Theta_3 = \mu (g_2 \otimes g - g \otimes g_2) + g_2 (\mu_H \otimes 1 - 1 \otimes \mu_H)$

- $\bar{g} : Hom(\mathbb{H}^3, H) \rightarrow Hom(\mathbb{H}^3, A)$ is a quasi-isomorphism

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H \otimes H \otimes H$</td>
<td>$u</td>
<td>u</td>
<td>u$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- Evaluate \bar{g} on the basis $\left\{ u|u|u \right\}$ for $Hom^{-1}(\mathbb{H}^3, H)$ and evaluate Θ_3 on the basis $\{ u|u|u \}$ in degree 6

 $$u|u|u \quad \overset{v \partial_{u|u|u}}{\mapsto} \quad v \quad \overset{\bar{g} \quad a_2 a_3 + a_3 a_2}{\mapsto} \quad \Theta_3 (u|u|u)$$

- Thinking of $v \partial_{u|u|u}$ as a class: $\bar{g}_* \left(v \partial_{u|u|u} \right) = \left[\Theta_3 \right]$

- Define $\mu^3_H = (\bar{g}_*)^{-1} \left[\Theta_3 \right] = v \partial_{u|u|u}$; then $\mu^3_H (u|u|u) = v$
Induced Higher Order Structure

\[\Theta_3 - g\mu_3^H \equiv 0 \]
\[\Theta_3 - g \mu_3^H \equiv 0 \]

- Define \(g_n = 0 \) and \(\mu^n_H = 0 \) for all \(n \geq 4 \)
Induced Higher Order Structure

- $\Theta_3 - g \mu^3_H \equiv 0$

- Define $g_n = 0$ and $\mu^n_H = 0$ for all $n \geq 4$

- Then (H, μ_H, μ^3_H) is an A_∞-algebra and $G = g + g_2$ is A_∞-map
\[\Theta_3 - g \mu_H^3 \equiv 0 \]

Define \(g_n = 0 \) and \(\mu^n_H = 0 \) for all \(n \geq 4 \)

Then \((H, \mu_H, \mu^3_H)\) is an \(A_\infty \)-algebra and \(G = g + g_2 \) is \(A_\infty \)-map

Theorem 1 extends immediately to \(A_\infty \)-bialgebras
Transfer is controlled by generalized multiplihedra $\{JJ_{m,n}\}_{m,n \geq 1}$ of which $JJ_{n,1} = JJ_{1,n} = J_n$

$$(g \otimes g) \omega_B^{2,2}$$

The Generalized Multiplihedron $JJ_{2,2}$
Transfer Problem 2

- The problem is exactly the same as before
Transfer Problem 2

- The problem is exactly the same as before
- Identify $g_{n,m}$ with the $(m + n - 1)$-dimensional polyhedron $J_{n,m}$
Transfer Problem 2

- The problem is exactly the same as before
- Identify $g_{n,m}$ with the $(m + n - 1)$-dimensional polyhedron $J_{n,m}$
- Let $Q^{m+n-2} \subset JJ_{n,m}$ denote the cell identified with $g \otimes n \omega_{B}^{n,m}$
Transfer Problem 2

- The problem is exactly the same as before
- Identify $g_{n,m}$ with the $(m + n - 1)$-dimensional polyhedron $J_{n,m}$
- Let $Q^{m+n-2} \subset JJ_{n,m}$ denote the cell identified with $g^\otimes n \omega_B^{n,m}$
- $\bigotimes_m^n \in Hom^{m+n-2}(B \otimes m, A \otimes n)$ is identified with $\partial JJ_{n,m} - \text{int } Q^{m+n-2}$
Transfer Problem 2

- The problem is exactly the same as before
- Identify $g_{n,m}$ with the $(m + n - 1)$-dimensional polyhedron $J_{n,m}$
- Let $Q^{m+n-2} \subset JJ_{n,m}$ denote the cell identified with $g \otimes^n \omega_B^{n,m}$
- $\ominus^n_m \in \text{Hom}^{m+n-2} (B \otimes^m, A \otimes^n)$ is identified with $\partial JJ_{n,m} - \text{int} Q^{m+n-2}$
- $\nabla \ominus^n_m \in \text{Hom}^{m+n-3} (B \otimes^m, A \otimes^n)$ is identified with ∂Q^{m+n-2}
Transfer Problem 2

- The problem is exactly the same as before

- Identify \(g_{n,m} \) with the \((m + n - 1)\)-dimensional polyhedron \(J_{n,m} \)

- Let \(Q^{m+n-2} \subset J_{n,m} \) denote the cell identified with \(g \otimes \omega_B^n \)

- \(\ominus^n_m \in \text{Hom}^{m+n-2}(B \otimes^m, A \otimes^n) \) is identified with \(\partial J_{n,m} - \text{int} Q^{m+n-2} \)

- \(\nabla \ominus^n_m \in \text{Hom}^{m+n-3}(B \otimes^m, A \otimes^n) \) is identified with \(\partial Q^{m+n-2} \)

Transfer Problem 2: Let \(A \) be an \(A_\infty \)-bialgebra, let \(B \) be a DGM, and let \(g : B \to A \) be a chain map. Given \(\{ \omega_B^{j,i}, g_i^j \}_{1 \leq i+j<k} \) construct \(g^n_m \) and \(\omega_B^{n,m} \) for each \((m, n)\) with \(m + n = k \) so that

\[
\nabla g^n_m = \ominus^n_m - g \otimes \omega_B^n \]

A chain map g induces a cochain map

$$\tilde{g} : \left(\text{Hom} \left(B^\otimes m, B^\otimes n \right); \nabla_B \right) \to \text{Hom} \left(B^\otimes m, A^\otimes n; \nabla \right)$$

given by $\tilde{g}(u) = g^\otimes n u$
Second Transfer Theorem

- A chain map g induces a cochain map

$$\tilde{g} : \left(\text{Hom} \left(B^\otimes m, B^\otimes n \right); \nabla_B \right) \to \text{Hom} \left(B^\otimes m, A^\otimes n; \nabla \right)$$

given by $\tilde{g} \left(u \right) = g^\otimes n u$

- Transfer Problem 2 has a solution whenever \tilde{g} is a quasi-isomorphism
Second Transfer Theorem

- A chain map g induces a cochain map

$$\tilde{g} : \left(\text{Hom} \left(B^\otimes m, B^\otimes n \right); \nabla_B \right) \rightarrow \text{Hom} \left(B^\otimes m, A^\otimes n; \nabla \right)$$

given by $\tilde{g}(u) = g^\otimes n u$

- Transfer Problem 2 has a solution whenever \tilde{g} is a quasi-isomorphism

Theorem 2. If \tilde{g} is a quasi-isomorphism, then

(i) g transfers the A_∞-bialgebra structure from A to B; the induced structure on B is unique up to automorphism

(ii) g extends to a map $G : B \Rightarrow A$ of A_∞-bialgebras
Proposition 2. Let A be an A_∞-bialgebra A over a field k, and choose a cycle-selecting homomorphism $g : H \to A$. Then \tilde{g} is a quasi-isomorphism.
Proposition 2. Let A be an A_{∞}-bialgebra A over a field k, and choose a cycle-selecting homomorphism $g : H \to A$. Then \tilde{g} is a quasi-isomorphism.

Corollary 2. If A is an A_{∞}-bialgebra over a field k, there is an induced A_{∞}-bialgebra structure on $H(A; k)$.
Proposition 2. Let A be an A_{∞}-bialgebra A over a field k, and choose a cycle-selecting homomorphism $g : H \to A$. Then \tilde{g} is a quasi-isomorphism.

Corollary 2. If A is an A_{∞}-bialgebra over a field k, there is an induced A_{∞}-bialgebra structure on $H(A; k)$.

Example 2. Let X be a space. There is an induced A_{∞}-bialgebra structure on $H_*(\Omega X; k)$.
Example 3. Let X be a simply connected space
Example 3. Let X be a simply connected space

$H = H^* (\Omega X; \mathbb{Q})$ is an A_∞-coalgebra with operations

$$\left\{ \Delta^n : H \rightarrow H \otimes^n \right\}_{n \geq 2}$$
Example 3. Let X be a simply connected space

$H = H^* (\Omega X; \mathbb{Q})$ is an A_∞-coalgebra with operations

$$\{ \Delta^n : H \to H^{\otimes n} \}_{n \geq 2}$$

Compatibility of the cup product μ with $\Delta = \Delta^2$ is expressed by the classical Hopf relation

$$\Delta \mu = (\mu \otimes \mu) \sigma_{2,2} (\Delta \otimes \Delta)$$
Example 3. Let X be a simply connected space

$H = H^* (\Omega X; \mathbb{Q})$ is an A_∞-coalgebra with operations

$$\left\{ \Delta^n : H \rightarrow H^\otimes n \right\}_{n \geq 2}$$

Compatibility of the cup product μ with $\Delta = \Delta^2$ is expressed by the classical Hopf relation

$$\Delta \mu = (\mu \otimes \mu) \sigma_{2,2} (\Delta \otimes \Delta)$$

Compatibility of μ with Δ^3 is expressed by the relation

$$\Delta^3 \mu = \mu^\otimes^3 \sigma_{3,2} \left[(\Delta \otimes 1) \Delta \otimes \Delta^3 + \Delta^3 \otimes (1 \otimes \Delta) \Delta \right],$$

where $\sigma_{p,q} : (H^\otimes p)^\otimes q \rightarrow (H^\otimes q)^\otimes p$ permutes tensor factors
Compatibility of μ with Δ^n is expressed in terms of the S-U diagonal on cellular chains of associahedra:

$$\Delta_K : C_*(K) \to C_*(K) \otimes C_*(K)$$
Compatibility of μ with Δ^n is expressed in terms of the S-U diagonal on cellular chains of associahedra:

$$\Delta_K : C_\ast(K) \rightarrow C_\ast(K) \otimes C_\ast(K)$$

Let e^{n-2} denote the top dimensional cell of K_n.
Compatibility of μ with Δ^n is expressed in terms of the S-U diagonal on cellular chains of associahedra:

$$\Delta_K : C_* (K) \rightarrow C_* (K) \otimes C_* (K)$$

Let e^{n-2} denote the top dimensional cell of K_n

Represent the A_∞-coalgebra H as an algebra over the A_∞-operad

$$\zeta : C_* (K) \rightarrow \text{Hom} (H, H^\otimes n)$$
Compatibility of μ with Δ^n is expressed in terms of the S-U diagonal on cellular chains of associahedra:

$$\Delta_K : C_*(K) \to C_*(K) \otimes C_*(K)$$

Let e^{n-2} denote the top dimensional cell of K_n

Represent the A_{∞}-coalgebra H as an algebra over the A_{∞}-operad

$$\zeta : C_*(K) \to \text{Hom}(H, H^{\otimes n})$$

Then $\zeta(e^{n-2}) = \Delta^n$ and

$$\Delta^n \mu = \mu^{\otimes n} \sigma_{n,2} \left[(\zeta \otimes \zeta) \Delta_K (e^{n-2}) \right]$$
Thank you!