Studies toward the synthesis of Hunanamycin A (HA) have recently been initiated in our laboratory. HA is a natural product isolated in small quantities (< 1 mg) from *Bacillus hunanensis*. It exhibits antibacterial activity for various pathogens such as *Salmonella* and *E. coli*. Conceivable synthetic routes to HA have been designed based on literature precedent. Test reactions (e.g. reductive amination, amine acylation, and cyclization) are being optimized on model systems to explore multiple pathways of producing the target product. Once an efficient route is elucidated, further biological testing of HA and related derivatives could allow for a calculated modification of the antibacterial properties displayed by this class of molecules. Currently, two methods, reductive amination and amine acylation, have achieved formation of a prenylated aromatic amine intermediate. Our most progressive route employs an intramolecular electrophilic cyclization of the prenylated aromatic amine to provide a tetrahydroquinoline intermediate.

Student Researchers: James W. Dreer, Matthew C. Carta
Faculty Advisor: Dr. Steven M. Kennedy