CHEMISTRY 112, INTRODUCTORY CHEMISTRY

Instructor: Dr. Rickard
Phone: 871-7412
e-mail: Lyman.Rickard@millersville.edu
Office: Caputo Hall 215

1. The lecture portion of the course will be Monday, Wednesday, and Friday from 2:00-2:50 taught in-person in Roddy 149.
2. The recitation and laboratory portion of the course will be taught in-person on campus.
3. Office hours: Monday and Friday 9:30-11:00 am; Wednesday 1:00 – 2:00; Tuesday 10:00–11:00.

COURSE MATERIALS
3. Laboratory Notebook: permanent bound, quadrille ruled, with duplicate pages carbon copy pages.
4. Safety Goggles/Glasses

A C- or better in CHEM 111 is a prerequisite for this class.

TENTATIVE EXAM SCHEDULE
Exam 1: Chapters 10 & 11: Oct 1
Exam 2: Chapters 12 & 13: Nov 5
Exam 3: Chapter 14: Dec 3
Final Exam: Dec 9, 10:15 am

LABORATORY SCHEDULE

<table>
<thead>
<tr>
<th>Date</th>
<th>Expt #</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 24, 25</td>
<td>16</td>
<td>Determination of an Equilibrium Constant, Part A</td>
</tr>
<tr>
<td>Aug 31, Sept 1</td>
<td>16</td>
<td>Determination of an Equilibrium Constant, Part B</td>
</tr>
<tr>
<td>Sept 7, 8</td>
<td>14</td>
<td>Equilibrium: Le Chatelier’s Principle</td>
</tr>
<tr>
<td>Sept 14, 15</td>
<td>19</td>
<td>Determination of the Ionization Constant of a Weak Acid</td>
</tr>
<tr>
<td>Sept 21, 22</td>
<td>18</td>
<td>Weak Acids, Bases, and Their Salts, Method III</td>
</tr>
<tr>
<td>Sept 28, 29</td>
<td>20</td>
<td>Investigation of Buffer Systems</td>
</tr>
<tr>
<td>Oct 5, 6</td>
<td>33-35</td>
<td>Qual I</td>
</tr>
<tr>
<td>Oct 13</td>
<td>33-35</td>
<td>Qual I</td>
</tr>
<tr>
<td>Oct 19, 20</td>
<td>28</td>
<td>A Penny’s Worth of Chemistry</td>
</tr>
<tr>
<td>Oct 26, 27</td>
<td>25</td>
<td>Investigation of Voltaic Cells, Parts A & B</td>
</tr>
<tr>
<td>Nov 2, 3</td>
<td>33-35</td>
<td>Qual I</td>
</tr>
<tr>
<td>Nov 9, 10</td>
<td>Handout</td>
<td>Crystal Violet Kinetics</td>
</tr>
<tr>
<td>Nov 16, 17</td>
<td>15</td>
<td>Kinetics Study of an Iodine Clock Reaction, Parts A</td>
</tr>
<tr>
<td>Nov 23</td>
<td>33-35</td>
<td>Qual I</td>
</tr>
<tr>
<td>Nov 30, Dec 1</td>
<td></td>
<td>Kinetics Study of an Iodine Clock Reaction Part B</td>
</tr>
</tbody>
</table>

HOMEWORK ASSIGNMENTS
Read each chapter as it is covered in lecture.
Chapter 10: 1, 2, 5, 9, 10, 11, 12, 15, 17, 21, 23, 25, 27, 28, 29, 31, 35, 37, 41, 44, 45, 48, 49, 53, 61, 63, 65, 71, 73, 75, 77, 79, 81, 85, 89, 95, 103, 105, 107, 112, 117
Chapter 11: 3, 7, 13, 15, 17, 19, 21, 33, 35, 37, 39, 41, 43, 47, 51, 54, 55, 63, 64, 67, 68, 69, 70, 77, 85, 87, 89, 91, 93, 95, 96, 97, 98, 105, 106, 107, 109, 111, 113, 115, 117, 120, 121, 125, 129, 131, 133, 143, 145, 147
Chapter 12: 1, 3, 4, 8, 9, 12, 13, 19, 21, 24, 26, 29, 31, 41, 46, 49, 51, 52, 53, 55, 57, 59, 67, 69, 71, 73, 77, 78, 81, 85, 89, 105, 111
Chapter 13: 1, 5, 9, 11, 15, 21, 23, 27, 29, 31, 33, 39, 43, 45, 49, 50, 51, 55, 59, 63, 73, 75, 79, 83, 87, 95
Chapter 14: 10, 12, 13, 14, 17, 19, 21, 23, 26, 27, 28, 31, 33, 35, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 57, 59, 63, 65, 75, 82, 83, 84, 85, 86, 88, 89, 91, 108, 109

CHEMISTRY TUTORING
Chemistry Peer Learning is provided by the department of chemistry to assist you in your preparation for your chemistry courses. The hours this semester will be In-Person in Roddy 153 from 2 – 4 and 5 – 7 pm on Tuesdays, Wednesdays, and Thursdays. All sessions will be in Roddy 153 except for Wednesday 2 – 4 which will be in Caputo
212. Students can attend any of these sessions at any time with no need to sign-up. Peer learning is a place to work on chemistry where support is immediately available. Please do not wait until you feel behind in the course to begin using this resource.

The university has established a relationship with “Smarthinking”. Smarthinking provides 24/7 tutoring support for introductory courses that can be accessed using your Millersville credentials via D2L. Access Smarthinking at https://wiki.millersville.edu/display/instructdocs/Smarthinking+Online+Tutoring

GRADING SYSTEM

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (3)</td>
<td>300 pts</td>
</tr>
<tr>
<td>Quizzes/Worksheets</td>
<td>100 pts</td>
</tr>
<tr>
<td>Final Exam</td>
<td>200 pts</td>
</tr>
<tr>
<td>Laboratory</td>
<td>200 pts</td>
</tr>
<tr>
<td>Total</td>
<td>800 pts</td>
</tr>
</tbody>
</table>

Letter Grade

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>736 - 800</td>
<td>92 - 100</td>
</tr>
<tr>
<td>A-</td>
<td>720 - 735</td>
<td>90 - 92</td>
</tr>
<tr>
<td>B+</td>
<td>704 - 719</td>
<td>88 - 90</td>
</tr>
<tr>
<td>B</td>
<td>656 - 703</td>
<td>82 - 88</td>
</tr>
<tr>
<td>B-</td>
<td>640 - 655</td>
<td>80 - 82</td>
</tr>
<tr>
<td>C+</td>
<td>616 - 639</td>
<td>77 - 80</td>
</tr>
<tr>
<td>C</td>
<td>544 - 615</td>
<td>68 - 77</td>
</tr>
<tr>
<td>C-</td>
<td>520 - 543</td>
<td>65 - 68</td>
</tr>
<tr>
<td>D+</td>
<td>512 - 519</td>
<td>64 - 65</td>
</tr>
<tr>
<td>D</td>
<td>488 - 511</td>
<td>61 - 64</td>
</tr>
<tr>
<td>D-</td>
<td>480 - 487</td>
<td>60 - 61</td>
</tr>
<tr>
<td>F</td>
<td>Below 480</td>
<td>< 60</td>
</tr>
</tbody>
</table>

A passing grade in the lecture component (360 pts of the possible 600) of the course must be achieved in order to receive a passing grade.

ATTENDANCE

Regular attendance is expected for all recitations and laboratories. If an absence results in a missed exam, quiz or lab, a request for excused absence form (attached) must be submitted to the instructor. Absences are excused for illness, family emergencies or university activities. Absences due to university activities must be discussed with the instructor in advance and arrangements made for making up the missed work. If a quiz is missed and the absence is excused, the final exam grade will be substituted for the missed work.

STUDENT RESPONSIBILITIES

You are responsible for all assigned work and material covered in class and lab. Work submitted after the due date will receive a grade of F unless prior arrangements have been made. However, the work must still be submitted or a grade of zero will be recorded. The average student will need to spend approximately 1 hour and 15 minutes preparation time for the course every day (including weekends) outside of class in order to receive an average grade. A higher grade will normally require additional study time. Two days of 5 hours each are not equivalent to an hour and 15 minutes each day. You should diligently prepare all assignments. When you encounter material which you can not master alone you should seek help immediately. The primary source of help should be the course instructor. You will find my office hours listed in the syllabus and posted on my office door. If you are having difficulty in the course I expect you to contact me.

PROBLEM ASSIGNMENTS/QUIZZES

Frequent problem assignments will be made from the text. The problem assignments will not be collected and graded. Instead, there will be frequent quizzes in lecture or recitation taken from the assigned problems and recitation worksheets. You are expected to read each chapter as it is being covered in lecture. Study the chapter in detail to increase your understanding of the material. Study all assigned homework problems until you understand them (not just until you obtain an answer). Plan to work only a few new problems (5-8) each night plus reading (60 minutes). Then review the problems from the previous night (15 minutes). You should be confident of the homework assignment before coming to class. The homework problems assigned are the minimum number of problems you are expected to work. They represent a broad overview of the types of problems you are expected to understand. You are expected to work
additional problems and to spend additional time on those problems that give you difficulty.

ACADEMIC HONESTY
Students are expected to be familiar with the University’s policy on academic honesty and dishonesty found in the Student Handbook and the Academic Honesty and Dishonesty brochure. Academic dishonesty includes cheating on an exam or quiz, presenting another student’s work as one’s own in a laboratory report or notebook, fabricating data in a laboratory experiment. Students are encouraged to work together on homework assignments, preparation for exams and laboratory reports. However, the results submitted in a laboratory report must represent the students own work.

LABORATORY
All laboratory procedures can be found on D2L. Before coming to lab you are expected to have diligently studied the experiment and outlined the procedure in your laboratory notebook. You should bring your laboratory notebook, and safety goggles to all labs. Laboratory experiments should be done during the assigned laboratory period. Any work outside of this period must be approved by the lab instructor; a chemistry faculty member must be available to supervise your work; and another student must be in the lab with you at all times. The pre-lab assignment should be completed but will not be handed in to the instructor. There will be a pre-lab quiz given in lab at the beginning of each new experiment.

THE LABORATORY NOTEBOOK
The laboratory notebook is a permanent record of your work in the laboratory. You must have your notebook with you in order to work in the lab. All notebooks must be permanently bound. All entries should be in ink. Each page must be consecutively numbered. As each page is completed you should sign/initial and date the page. The procedure must be outlined in the notebook and the safety precautions listed before coming to lab. All data must be recorded in the notebook using correct significant figures and proper units. Never write data on another sheet of paper with the idea of transferring it to the notebook. Notebooks should be relatively neat and orderly, however, data should never be recopied into another notebook. If an error is made, do not obliterate the data (also do not use white out, tear out pages or tape in new pages). Draw a single line through any errors and write the correct data.

The notebook is a record of your work as it is done. The notebook should be kept in such a way that the instructor can turn to any experiment and tell exactly what you did during the experiment. All data must include the appropriate units and be labeled to identify the data. All calculations, graphs, tables and assigned questions must be included in the notebook. All lab notebooks should be reviewed and initialed by the instructor at the end of each laboratory period.

A conclusion will be required for some lab reports. The conclusion should be one paragraph. It should state the major results of the experiment. This statement of results should agree with the purpose of the experiment written at the beginning of the report. This should be followed by a statement describing whether you are confident in the results. The remainder of the conclusion should be an argument to convince the reader why you feel your results are appropriate or not. This argument can refer to the agreement between multiple trials, agreement with other student results, trends in the data such as a linear graph or other observations from the experiment.

Laboratory notebooks will be evaluated on the following criteria:
1. Each page: page #, date completed and name
2. Format: organization, neatness, completeness
3. Purpose: describe what is being measured or determined
4. Outline of the Procedure
5. List of Safety Precautions
6. Data Presentation: data in tabular form, significant figures, labels and units
7. Sample calculations: neat orderly, with units and correct significant figures
8. Results: quality of results
9. Conclusions: one paragraph (as described above)
10. Questions
11. Graphs: title, labels, units

COURSE OUTLINE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Kinetics and Equilibrium</td>
</tr>
<tr>
<td></td>
<td>Reactions That Don't Go to Completion</td>
</tr>
<tr>
<td></td>
<td>Gas-Phase Reactions</td>
</tr>
<tr>
<td></td>
<td>The Rate of a Chemical Reaction</td>
</tr>
</tbody>
</table>
The Collision Theory of Gas-Phase Reactions
Equilibrium Constant Expressions
Reaction Quotients
Changes in Concentration That Occur as a Reaction Comes to Equilibrium
The Effect of Temperature on an Equilibrium Constant
LeChâtelier's Principle
Equilibrium Reactions Which Involve Pure Solids and Liquids

11 Acids and Bases
Properties of Acids and Bases
The Arrhenius & Bronsted Definitions of Acids and Bases
Conjugate Acid--Base Pairs
The Role of Water in the Bronsted Model
pH as a Measure of the Concentration of the H_3O^+ Ion
The Relative Strengths of Acids and Bases
Relationship of Structure to Relative Strengths of Acids
Acid and Base pH Calculations
Buffers and Buffer Capacity

12 Oxidation-Reduction
Oxidation Numbers
Recognizing Oxidation--Reduction Reactions
Voltaic Cells
Oxidizing and Reducing Agents
Relative Strengths of Oxidizing and Reducing Agents
Standard-State Cell Potentials
Nonstandard Conditions & The Nernst Equation
Electrolysis and Faraday's Law

13 Thermodynamics
Spontaneous Chemical and Physical Processes
Entropy as a Measure of Disorder
Entropy and the Second Law of Thermodynamics
The Third Law of Thermodynamics
Calculating Entropy Changes for Chemical Reactions
Gibbs Free Energy
The Effect of Temperature on the Free Energy of a Reaction
Equilibria Expressed in Partial Pressures
Interpreting Standard-State Free Energy of Reaction Data
The Relationship Between Free Energy and Equilibrium Constants
The Temperature Dependence of Equilibrium Constants

14 Rates of Chemical Reaction
The Forces That Control a Chemical Reaction
Chemical Kinetics and Instantaneous Rates of Reaction
Rate Laws and Rate Constants
Order and Molecularity
Collision Theory of Chemical Reactions
The Mechanisms of Chemical Reactions
Determining the Order of a Reaction
The Integrated Form of First-Order and Second-Order Rate Laws
The Activation Energy of Chemical Reactions
Catalysts and the Rates of Chemical Reactions

Millersville University and its faculty are committed to assuring a safe and productive educational environment for all students. In order to meet this commitment, comply with Title IX of the Education Amendments of 1972, 20 U.S.C. §1681, et seq., and act in accordance with guidance from the Office for Civil Rights, the University requires faculty members to report to the University’s Title IX Coordinator incidents of sexual violence shared by students. The only exceptions to the faculty member’s reporting obligation are when incidents of sexual violence are communicated by a student during a classroom discussion, in a writing assignment for a class, or as part of a
University-approved research project. Faculty members are obligated to report to the person designated in the University Protection of Minors policy incidents of sexual violence or any other abuse of a student who was, or is, a child (a person under 18 years of age) when the abuse allegedly occurred.

Information regarding the reporting of sexual violence, and the resources that are available to victims of sexual violence, is available at http://www.millersville.edu/socialeq/title-ix-sexual-misconduct/index.php.
Request for Excused Absence To be completed within one week of returning to class.

Student Name:

Dates of Absence:

Reason for Absence (circle one): Illness, Family Emergency, University Activity

I request this absence be excused and that: (check all that apply)

_____ my final exam grade be substituted for the missed lecture quiz.

_____ my final exam grade be substituted for the missed test.

_____ my final exam grade be substituted for the missed pre-lab quiz.

_____ I be allowed to make-up the missed laboratory experiment. The lab must be made-up and the laboratory report submitted for grading within one week of returning to class.

Attach documentation to support the request for an excused absence.