Publications

Explore publications by faculty and staff.

The results sourced below were populated by EBSCO. If you have any questions about our search criteria, please contact Jeffry Porter (jeffry.porter@millersville.edu).

Predicting the Inland Penetration of Long-Lake-Axis-Parallel Snowbands.

Faculty Author(s): Sikora, Todd D. ; Clark, Richard D.
Student Author(s): -
Department: ESCI
Publication: Weather & Forecasting
Year: 2018
Abstract: Predicting the inland penetration of lake-effect long-lake-axis-parallel (LLAP) snowbands is crucial to public safety because LLAP bands can produce hazardous weather well downwind of the parent lake. Accordingly, hypotheses for the variation in inland penetration of LLAP-band radar echoes (InPen) are formulated and tested. The hypothesis testing includes an examination of statistical relationships between environmental variables and InPen for 34 snapshots of LLAP bands observed during the Ontario Winter Lake-effect Systems (OWLeS) field campaign. Several previously proposed predictors of LLAP-band formation or InPen demonstrate weak correlations with InPen during OWLeS. A notable exception is convective boundary layer (CBL) depth, which is strongly correlated with InPen. In addition to CBL depth, InPen is strongly correlated with cold-air advection in the upper portion of the CBL, suggesting that boundary layer destabilization produced by vertically differential cold-air advection may be an important inland power source for preexisting LLAP bands. This power production is quantified through atmospheric energetics and the resulting variable, differential thermal advection power (DTAP), yields reasonably skillful predictions of InPen. Nevertheless, an InPen model developed using DTAP is outperformed by an empirical model combining CBL depth and potential temperature advection in the upper portion of the CBL. This two-variable model explains 76% of the observed InPen variance when tested on independent data. Finally, implications for operational forecasting of InPen are discussed. [ABSTRACT FROM AUTHOR] Copyright of Weather & Forecasting is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Link: Predicting the Inland Penetration of Long-Lake-Axis-Parallel Snowbands.

Return to directory